首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y(x)=xe-x+e—h,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个特解. 求这个方程和它的通解;
已知y(x)=xe-x+e—h,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个特解. 求这个方程和它的通解;
admin
2014-02-06
81
问题
已知y(x)=xe
-x
+e—h,y
2
*
(x)=xe
-x
+xe
-2x
,y
3
*
(x)=xe
-x
+e
-2x
+xe
-2x
是某二阶线性常系数微分方程y
’’
+py
’
+qy=f(x)的三个特解.
求这个方程和它的通解;
选项
答案
由线性方程解的叠加原理→y
1
(x)=y
3
*
(x)一y
2
*
(x)=e
-2x
,y
2
(x)=y
3
*
(x)一y
1
*
(x)=xe
-2x
均是相应的齐次方程的解,它们是线性无关的.于是相应的特征方程为(λ+2)
2
=0,即λ
2
+4λ+4=0,原方程为y
2
+4y
2
+4y=f(x).(*)又y
*
(x)=xe
-x
是它的特解,求导得y
*’
(x)=e
-x
(1一x),y
*’’
(x)=e
-x
(x一2).代入方程(*)得e
-x
(x一2)+4e
-x
(1一x)+4xe
-x
=f(x)→f(x)=(x+2)e
-x
→所求方程为y
’’
+4y
’
+4y=(x+2)e
-x
,其通解为y=C
1
e
-2x
+C
2
xe
-2x
+xe
-x
,其中C
1
,C
2
为[*]常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/kk54777K
0
考研数学一
相关试题推荐
设3阶实对称矩阵A的秩为2,且求A的所有特征值与特征向量;
设有一薄板,其边沿为一抛物线,如图1-3-3所示,若顶点恰在水面上,试求薄板所受的静压力,并求将薄板下沉多深,压力加倍?
设f(x)为[0,1]上单调减少的连续函数,且f(x)>0,试证:存在唯一的点ξ∈(0,1),使得成立.
已知的一个特征向量.试确定参数a,b及特征向量ξ所对应的特征值;
设f(x)在区间[0,1]上可微,当0≤x<1时,恒有0<f(1)<f(x),且f’(x)≠f(x).讨论在(0,1)内存在唯一的点ξ,使得
设A为m阶实对称矩阵且正定,B为m×n实矩阵,BT为B的转置矩阵,试证:BTAB为正定矩阵的充分必要条件是B的秩r(B)=n.
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f’(x)>0,如果存在,证明:存在与第二问中ξ不同的η∈(a,b),使得
设函数f(x)在区间[a,b]上连续,在(a,b)内可导,且f’(x)>0,如果存在,证明:存在ξ∈(a,b),使得;
求极限
设线性方程组已知方程组(**)的解都是方程组(*)的解.(Ⅰ)求(*)的通解;(Ⅱ)求常数a,b,c.
随机试题
食管脉裂孔()
A.酶促降解B.末梢重摄取C.进入突触后细胞D.被神经胶质细胞摄取E.被细胞所稀释去甲肾上腺素作用于受体产生效应后被消除的主要方式是
患者,男,55岁。主诉右上后牙食物嵌塞,有时遇冷热敏感。检查发现右上第二磨牙牙合面中龋,损及牙合面边缘嵴,备洞时制成邻牙合洞形若右上第二磨牙的龋洞位于近中面,未损及牙合边缘,且第一磨牙缺失,制备的洞形属于
王某将其全部收入用于住房和其他生活用品消费,当增加对住房的消费后,其他生活用品消费对王某的边际效用()。
若某件事经过风险评估,位于事件风险量区域图中的风险区A,则应采取适当措施降低其()。[2012年真题]
从19世纪中期到19世纪末,列强侵略中国的趋势主要是()。
如图,长方形ABCD的AB长16厘米,BC长20厘米,M是BC边上的中点,在AB边上取一点P,使三角形PMD的面积为100平方厘米,P点应取在距离A点几厘米处?
(2005下软设)代码走查(codewalkthrough)和代码审查(codeinspection)是两种不同的代码评审方法,这两种方法的主要区别是______。
Themanbehindthisnotion,JackMaple,isadandywhoaffectsdarkglasses,homburgs(翘边帽)andtwo-toeshoes;yethehasbecomeso
Itissimpleenoughtosaythatsincebookshaveclasses--fiction,biography,poetry--weshouldseparatethemandtakefrom
最新回复
(
0
)