首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知y(x)=xe-x+e—h,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个特解. 求这个方程和它的通解;
已知y(x)=xe-x+e—h,y2*(x)=xe-x+xe-2x,y3*(x)=xe-x+e-2x+xe-2x是某二阶线性常系数微分方程y’’+py’+qy=f(x)的三个特解. 求这个方程和它的通解;
admin
2014-02-06
82
问题
已知y(x)=xe
-x
+e—h,y
2
*
(x)=xe
-x
+xe
-2x
,y
3
*
(x)=xe
-x
+e
-2x
+xe
-2x
是某二阶线性常系数微分方程y
’’
+py
’
+qy=f(x)的三个特解.
求这个方程和它的通解;
选项
答案
由线性方程解的叠加原理→y
1
(x)=y
3
*
(x)一y
2
*
(x)=e
-2x
,y
2
(x)=y
3
*
(x)一y
1
*
(x)=xe
-2x
均是相应的齐次方程的解,它们是线性无关的.于是相应的特征方程为(λ+2)
2
=0,即λ
2
+4λ+4=0,原方程为y
2
+4y
2
+4y=f(x).(*)又y
*
(x)=xe
-x
是它的特解,求导得y
*’
(x)=e
-x
(1一x),y
*’’
(x)=e
-x
(x一2).代入方程(*)得e
-x
(x一2)+4e
-x
(1一x)+4xe
-x
=f(x)→f(x)=(x+2)e
-x
→所求方程为y
’’
+4y
’
+4y=(x+2)e
-x
,其通解为y=C
1
e
-2x
+C
2
xe
-2x
+xe
-x
,其中C
1
,C
2
为[*]常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/kk54777K
0
考研数学一
相关试题推荐
设A为2阶矩阵,α为非零向量,但不是A的特征向量,且满足A2α+Aα-2α=0,试证A可相似对角化.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-1,且α1=(1,a+1,2)T,α2=(a-1,-a,1)T分别是λ1,λ2对应的特征向量.又A的伴随矩阵A*有一个特征值为λ0,属于λ0的特征向量为α0=(2,-5a,2a+1)T.试求a、λ0的值
求下列微分方程满足初始条件的特解:
设f(x)是连续函数,且,则f(7)=________________
设对于半空间x>0内的任意光滑有向封闭曲面∑,都有其中函数f(x)在(0,+∞)内具有连续的一阶导数,且,求f(x)
已知极限,试确定常数n和c的值.
设f(x)在[a,+∞)上连续,在(a,+∞)内可导,且f’(x)>k>0(k为常数),又f(a)<0,证明方程f(x)=0在内有唯一的实根.
设(Ⅰ)求常数a,b,c;(Ⅱ)判断A是否可相似对角化,若A可相似对角化,则求可逆阵P,使得P-1AP为对角阵,反之说明理由。
设矩阵A=,B=,且存在矩阵X,使得AX=B+2X.求参数a,b;
随机试题
关于耳蜗微音器电位的叙述,错误的是
论述用高尚的人生目的指引人生方向的原因。
低钾血症时,体内并不一定缺钾的情况有哪些
患者,女,22岁。去某医院行拔牙术,注射麻药时,患者出现头晕、恶心、胸闷、四肢无力。查体:血压90/60mmHg,脉搏65次/分,面部及口唇苍白。对该患者上述情况的正确处理是()。
()是指依照公司法规定和依中华人民共和国证券法第一百一十七条规定批准的从事证券经营业务的有限责任公司或者股份有限公司。
背景:某幕墙公司通过招投标从总承包单位承包了某机关办公大楼幕墙工程施工任务。承包合同约定,本工程实行包工包料承包,合同工期180个日历天。在合同履行过程中发生了以下事件:事件一:按照合同约定,总承包单位应在8月1日交出施工场地,但由于总
Iwon’tpay$200forthisarticle,it’snotworth().
资产负债表中“固定资产清理”项目根据固定资产清理科目的贷方余额填列,如果是借方余额以负号表示。()
设x-(a+bcosx)sinx为x=0时x的5阶无穷小,求a,b的值.
[*]
最新回复
(
0
)