首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P—1AP=Λ。
设A为三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 (Ⅰ)求矩阵A的特征值; (Ⅱ)求可逆矩阵P使得P—1AP=Λ。
admin
2017-12-29
31
问题
设A为三阶矩阵,α
1
,α
2
,α
3
是线性无关的三维列向量,且满足Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
。
(Ⅰ)求矩阵A的特征值;
(Ⅱ)求可逆矩阵P使得P
—1
AP=Λ。
选项
答案
(Ⅰ)由已知可得 A(α
1
,α
2
,α
3
)=(α
1
+α
2
+α
3
,2α
2
+α
3
,2α
2
+3α
3
)=(α
1
,α
2
,α
3
)[*] 记P
1
=(α
1
,α
2
,α
3
), [*] 则有AP
1
=P
1
B。 由于α
1
,α
2
,α
3
线性无关,即矩阵P
1
可逆,所以P
1
—1
AP
1
=B,因此矩阵A与B相似,则 [*]=(λ一1)
2
(λ一4), 矩阵B的特征值是1,1,4,故矩阵A的特征值为1,1,4。 (Ⅱ)由(E—B)x=0,得矩阵B对应于特征值λ=1的特征向量β
1
=(一1,1,0)
T
,β
2
=(一2,0,1)
T
;由(4E—B)x=0,得对应于特征值λ=4的特征向量β
3
=(0,1,1)
T
。 令P
2
=(β
1
,β
2
,β
3
)=[*] P
2
—1
P
1
—1
AP
1
P
2
=[*] 即当P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(一α
1
+α
2
,一2α
1
+α
2
+α
3
)时,有 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/PUX4777K
0
考研数学三
相关试题推荐
已知A,B是三阶方阵,A≠0,AB=0证明:B不可逆.
已知A,B均是3阶矩阵,将A中第3行的一2倍加到第2行得矩阵A1,将B中第1列和第2列对换得到B1,又A1B1=,则AB=________.
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:必存在ξ∈(0,3),使f’(ξ)=0.
求一个以y1=tet,y2=sin2t为其两个特解的四阶常系数齐次线性微分方程,并求其通解.
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[α1j,α2j,α3j,α4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3,α5线性表出,说明理由.
设函数f(x)在(a,b)内存在二阶导数,且f"(x)<0.试证:若x1,x2,…xn∈(a,b),且xi<xi+1(i=1,2,…,n一1),则其中常数ki>0(i=1,2,…,n)且
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式
判别下列级数的敛散性(k>1,a>1):(1)(2)(3)
方程y″-3y′+2y=excos2x的特解形式y*=().
y=e2x+(1+x)ex是二阶常系数线性微分方程yˊˊ+ayˊ+βy=rex的一个特解,则α2+β2+r2=________.
随机试题
不属于抗消化性溃疡的药是
甲、乙、丙、丁四人均为某市阳光小区业主委员会的委员,在小区召开的一次业主委员会会议上,由于意见相左,四人发生争执,经旁人劝阻无效。甲、乙将丙、丁二人打成轻伤。事后,丙向人民法院提起刑事自诉,要求人民法院追究甲的刑事责任。人民法院依法受理了本案,并通知另一被
某建筑岩质边坡高度H=10m,无外倾结构面,其边坡工程的勘察范围为到坡顶的水平距离一般不应小于()。
关于进度款的支付,下列说法错误的是()。
在建立了“四边形”概念后,再学习平行四边形、梯形、菱形、矩形、正方形等概念,这属于().
下列属于平面手工活动的内容是()
请你谈谈如何做好监狱安全隐患排查工作。
科学发展观是中国特色社会主义理论体系的重要内容,是我们各方面工作必须坚持的重大战略思想,科学发展观的第一要义是()。
在考生文件夹下有一个工程文件sjt4.vbp,其窗体上有两个标题分别为”添加”和”退出”的命令按钮,一个内容为空的列表框Listl。请画一个标签,其名称为Labell,标题为”请输入编号”;再画一个名称为Textl,初始值为空的文本框,如图2-42所示。程
ThesetwostudentstalkaboutnewpoliciesontheincreaseofanenormousvarietyofhighereducationinanOpenUniversity.Thi
最新回复
(
0
)