首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1=(1,一1,1)T,α2=(1,t,一1)T,α3=(t,1,2)T,β=(4,t2,一4)T,若β可由向量组α1,α1,α3线性表示,且表示法不唯一,求t及β的表达式。
已知α1=(1,一1,1)T,α2=(1,t,一1)T,α3=(t,1,2)T,β=(4,t2,一4)T,若β可由向量组α1,α1,α3线性表示,且表示法不唯一,求t及β的表达式。
admin
2018-12-19
88
问题
已知α
1
=(1,一1,1)
T
,α
2
=(1,t,一1)
T
,α
3
=(t,1,2)
T
,β=(4,t
2
,一4)
T
,若β可由向量组α
1
,α
1
,α
3
线性表示,且表示法不唯一,求t及β的表达式。
选项
答案
记A=(α
1
,α
2
,α
3
),考虑线性方程组Ax=β。对其系数矩阵的增广矩阵进行初等行变换,即 [*] 由题意可知,线性方程组有无穷多解,所以r(A)=[*]<3,从而t=4。 当t=4时, [*] 线性方程组Ax=β的通解为k(一3,一1,1)
T
+(0,4,0)
T
,k∈R。所以 β=一3kα
1
+(4一k)α
2
+kα
3
,k∈R。
解析
转载请注明原文地址:https://kaotiyun.com/show/PVj4777K
0
考研数学二
相关试题推荐
设u=f(x,y,z),φ(x2,ey,z)=0,y=sinx,其中f,φ都具有一阶连续偏导数,且
设g(x)=∫0xf(u)du,其中则g(x)在区间(0,2)内()
曲线在(0,0)处的切线方程为__________.
(2005年)如图,曲线C的方程为y=f(χ),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(χ)具有三阶连续导数,计算定积分∫03(χ2+2χ)f″′(χ)dχ.
(2013年)求曲线χ3-χy+y3=1(χ≥0,y≥0)上的点到坐标原点的最长距离与最短距离.
(2006年)设f(χ,y)与φ(χ,y)均为可微函数,且φ′y(χ,y)≠0.已知(χ0,y0)是f(χ,y)在约束条件φ(χ,y)=0下的一个极值点,下列选项正确的是【】
(2002年)设向量组α1,α2,α3线性无关,向量β1可由α1,α2,α3线性表示,而向量β2不能由α1,α2,α3线性表示,则对于任意常数k,必有【】
(2006年)设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Aχ=0的两个解.(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
求二元函数z=f(x,y)=x2y(4-x-y)在由x轴、y轴及x+y=6所围成的闭区域D上的最小值和最大值.
求|z|在约束条件下的最大值与最小值。
随机试题
二甲双胍的不良反应是
电流互感器安装如需吊芯检查,预算定额的()应进行调整。
城市桥梁施工方案中的关键问题是( )。
下列关于做市商与经纪人的区别说法错误的是()。
基金销售机构应在基金投资者首次购买基金时对已购买基金投资者的风险承受能力当面进行调查和评价,而不能以信函或网络的方式进行调查。()
甲向某编辑部乙去函,询问该编辑部是否出版了有关律师考试的教材和参考资料,乙立即向甲邮寄了律师考试资料五本,共120元,甲认为该书不符合其需要,拒绝接受,双方为此发生了争议。从本案来看()。
下列有关商品销售收入确认和计量方法的表述中,正确的有()。
《刑法》第385条规定:国家工作人员利用职务上的便利,索取他人财物的,或者非法收受他人财物,为他人谋取利益的,是受贿罪。国家工作人员在经济往来中,违反国家规定,收受各种名义的回扣、手续费,归个人所有的,以受贿论处。第388条规定:国家工
TeachingEnglishthroughChildren’sLiteratureI.Acase:charactersinchildren’sliterature【T1】______themlearn【T1】______Eng
A、LondonBridge.B、BuckinghamPalace.C、St.Paul’sCathedral.D、TwinsTower.C旅行交通类,事实细节题。女士说从这儿可以见到许多著名的伦敦地标,如伊丽莎白塔、议会大厦、圣保罗大教堂
最新回复
(
0
)