首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2—α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2—α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
admin
2019-03-23
82
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
—α
3
,若β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解。
选项
答案
由α
2
,α
3
,α
4
线性无关,且α
1
=2α
2
—α
3
,知R(A)=3,从而Ax=0的基础解系只含有一个解向量。由α
1
—2α
2
+α
3
+0α
4
=0,知(1,—2,1,0)
T
为Ax=0的一个基础解系。 又β=α
1
+α
2
+α
3
+α
4
,即 (α
1
,α
2
,α
3
,α
4
)[*]=β, 知(1,1,1,1)
T
为Ax=β的一个特解。因此,Ax=β的通解为(1,1,1,1)
T
+k(1,—2,1,0)
T
,其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/PXV4777K
0
考研数学二
相关试题推荐
设(1)问k为何值时A可相似对角化?(2)此时作可逆矩阵U,使得U-1AU是对角矩阵.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
讨论p,t为何值时,方程组无解?有解?有解时写出全部解.
已知方程组总有解,则λ应满足_________.
A=,r(A)=2,则()是A*X=0的基础解系.
已知a,b,c不全为零,证明方程组只有零解.
已知齐次方程组同解,求a,b,c.
证明3阶矩阵
判断下列函数的单调性:
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2一4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。写出f(x)在[一2,2]上的表达式;
随机试题
背景某施工单位通过公开招标中标某工程,与业主签订的承包合同部分内容有:(1)工程合同总价2100万元,工程价款采用调值公式动态结算;该工程的人工费可调,占工程价款的35%;材料有4种可调:材料1占5%,材料2占15%,材料3占15%,材料4占10%;不
Manyayoungpersontellsmehewantstobeawriter.Ialwaysencouragesuchpeople,butIalsoexplainthatthere’sabigdiff
关于己糖激酶,叙述恰当的是
常见免疫性输血不良反应是
患者,男,78岁。口腔有一较深溃疡,内有酸臭绿色液体,稍黏稠,为其进行口腔护理时选用的含漱液是
水资源规划按层次划分为()。
背景为提高机场运行安全,某4E级国际机场拟对飞行区围界进行改造。工程内容如下:在原有围界外侧2~5m区域增设一层围界,新增围界高3.5m(含蒺藜滚网),底部设置混凝土基础和地梁;将专机楼东部区域旧围界拆除,在原位置新建钢筋网围界,在改造的飞行区围界内新建
强制约束是一种公安行政强制措施。()
转移收支:指因社会义务而发生的收支,如财政补贴等。它在很大程度上就有按需分配的因素。根据以上定义,下列叙述不是转移收支的是()。
过去十年,地产一直是民间大额财富主要配置对象,经济也依靠地产黄金十年和基建投资实现腾飞。但伴随行业供过于求、政策收紧以及经济结构转型,地产黄金十年荡然无存。《每日经济新闻》记者注意到,平安证券研报称,1998年取消住房实物分配以来。中国商品房市场在16年
最新回复
(
0
)