首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2—α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2—α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
admin
2019-03-23
76
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
—α
3
,若β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解。
选项
答案
由α
2
,α
3
,α
4
线性无关,且α
1
=2α
2
—α
3
,知R(A)=3,从而Ax=0的基础解系只含有一个解向量。由α
1
—2α
2
+α
3
+0α
4
=0,知(1,—2,1,0)
T
为Ax=0的一个基础解系。 又β=α
1
+α
2
+α
3
+α
4
,即 (α
1
,α
2
,α
3
,α
4
)[*]=β, 知(1,1,1,1)
T
为Ax=β的一个特解。因此,Ax=β的通解为(1,1,1,1)
T
+k(1,—2,1,0)
T
,其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/PXV4777K
0
考研数学二
相关试题推荐
已知A=可对角化,求可逆矩阵P及对角矩阵Λ,使P-1AP=Λ.
设α,β都是n维列向量时,证明①αβT的特征值为0,0,…,0,βTα.②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
设(1)求方程组AX=0的一个基础解系.(2)a,b,c为什么数时AX=B有解?(3)此时求满足AX=B的通解.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
已知方程组总有解,则λ应满足_________.
已知a,b,c不全为零,证明方程组只有零解.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
已知非齐次线性方程组有3个线性无关的解.(1)证明此方程组的系数矩阵A的秩为2.(2)求a,b的值和方程组的通解.
证明:χ-χ2<ln(1+χ)<χ(χ>0).
设y=∫0χdt+1,求它的反函数χ=φ(y)的二阶导数及φ〞(1).
随机试题
__________是一个由行和列交叉排列的二维表,用于组织和分析数据。
f(2x)
A.发热、贫血、出血B.出血C.贫血D.发热、贫血、出血、淋巴结或肝脾肿大E.明显的脾肿大急性白血病的主要临床表现是
混凝土标准养护室的温度及相对湿度分别为()。
人民法院对建设纠纷案件作出判决的行为属于( )。
资产负债风险管理模式的主要分析手段包括()。
欧洲中央银行是为了适应欧元发行流通而设立的金融机构。从组织形式上看,其属于()。
美国心理学家马斯洛认为()是属于缺失性需要的一种。
昨天下午,在北京市一所普通中学的礼堂里正在召开初三年级学生家长会。台上两名老师正在讲着今年中考的形势,台下的家长个个面色凝重,几乎每个家长都在记笔记,生怕落下任何一个关键的细节。整个会场,除了老师讲话的声音外,几乎听不到其他声响,偶尔听到一个手机铃声显得异
根据下列材料回答问题。2005—2011年,平均每年新增城镇职工基本医疗保险参保者约为多少亿人?()
最新回复
(
0
)