首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2—α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2—α3,若β=α1+α2+α3+α4,求线性方程组Ax=β的通解。
admin
2019-03-23
44
问题
已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
—α
3
,若β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解。
选项
答案
由α
2
,α
3
,α
4
线性无关,且α
1
=2α
2
—α
3
,知R(A)=3,从而Ax=0的基础解系只含有一个解向量。由α
1
—2α
2
+α
3
+0α
4
=0,知(1,—2,1,0)
T
为Ax=0的一个基础解系。 又β=α
1
+α
2
+α
3
+α
4
,即 (α
1
,α
2
,α
3
,α
4
)[*]=β, 知(1,1,1,1)
T
为Ax=β的一个特解。因此,Ax=β的通解为(1,1,1,1)
T
+k(1,—2,1,0)
T
,其中k为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/PXV4777K
0
考研数学二
相关试题推荐
n维向量α=(a,0,...,0,a)T,a<0,A=E-ααT,A-1=E+α-1ααT,求a.
设α,β都是n维非零列向量,A=αβT.证明:A相似于对角矩阵βTα≠0.
设3阶矩阵A的各行元素之和都为2,又α1=(1,2,2)T和α2=(0,2,1)T分别是(A-E)X=0的(A+E)X=0的解.(1)求A的特征值与特征向量.(2)求矩阵A.
设α1,α2,…,αs,β1,β2,…,βt线性无关,其中α1,α2,…,αs是齐次方程组AX=0的基础解系.证明Aβ1,Aβ2,…,Aβt线性无关.
设(Ⅰ)和(Ⅱ)都是3元非齐次线性方程组,(Ⅰ)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(Ⅰ)和(Ⅱ)的公共解.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
已知ξ1=(-3,2,0)T,ξ2=(-1,0,-2)T是方程组的两个解,则此方程组的通解是________.
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)内恒为零。
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)的极大值不能为正,极小值不能为负;
随机试题
与眼眶MR扫描方位不符的内容为
观察研究的重要特点是在“_________”的条件下,对观察对象不加任何干预控制。
衔接:胎头双顶径进入
A.大脑B.心脏C.肾脏D.脾脏E.肺脏一氧化碳中毒最先受损的部位是()。
2012年2月10日,王某因涉嫌盗窃被县公安局刑事拘留,2月26日,县检察院批准逮捕王某。3月12日,县公安局变更强制措施,对王某采取取保候审措施。4月28日,县法院以盗窃罪判处王某有期徒刑2年。王某上诉,5月10日,市中级法院维持原判。5月11日,王某被
企业计算应缴纳的所得税1200元,正确的分录是()。
一般用未分配利润的大小来衡量基金的经营成果。()
下列关于同业拆借的表述,不正确的是()。
在新文化运动中,以白话小说蜚声文坛的著名代表人物是()。
贝利亚事件
最新回复
(
0
)