首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶实对称矩阵,A的特征值是λ1=1,λ2=2,λ3=一1,且α1=分别是λ1,λ2对应的特征向量,A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量是β=,求a及λ0的值,并求矩阵A.
设A是三阶实对称矩阵,A的特征值是λ1=1,λ2=2,λ3=一1,且α1=分别是λ1,λ2对应的特征向量,A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量是β=,求a及λ0的值,并求矩阵A.
admin
2017-07-26
53
问题
设A是三阶实对称矩阵,A的特征值是λ
1
=1,λ
2
=2,λ
3
=一1,且α
1
=
分别是λ
1
,λ
2
对应的特征向量,A的伴随矩阵A
*
有特征值λ
0
,λ
0
所对应的特征向量是β=
,求a及λ
0
的值,并求矩阵A.
选项
答案
由题设有A
*
β=λ
0
β,于是AA
*
β=λ
0
Aβ,而AA
*
=|A|E,从而有Aβ=[*]的特征向量. 又α
1
,α
2
是实对称矩阵A属于不同特征值λ
1
,λ
2
的特征向量,必正交,即有 α
1
T
α
2
=a一1一a(a+1)+2=0,解得a=±1. 设α
3
=[*]为A的对应于λ
1
=一1的特征向量,由A是实对称矩阵知,α
3
与α
1
,α
2
均正交,即 [*] 由于β也为A的特征向量,应与α
1
,α
2
,α
3
中某一个成比例,显然不成立,故a=1不合题意. 当a=一1时,方程组为 [*] β与α
3
成比例,可见β也是A对应于特征值λ
3
=一1的特征向量,且有[*]=λ
1
λ
2
=2. 故a=一1,λ
0
=2. 由Aα
i
=λ
i
ai(i=1,2,3),有A[α
1
,α
2
,α
3
]=[λ
1
α
1
,λ
2
α
2
,λ
3
α
3
],于是 A=[λ
1
α
1
,λ
2
α
2
,λ
3
α
3
][α
1
,α
2
,α
3
]
—1
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/PgH4777K
0
考研数学三
相关试题推荐
[*]
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,问:(Ⅰ)a1能否由a2,a3,线性表出?证明你的结论.(Ⅱ)a4能否由a1,a2,a3铴线性表出?证明你的结论.
向量组a1,a2,…,as线性无关的充分条件是().
设A为n(n≥2)阶可逆矩阵,交换A的第1行与第2行得矩阵B,A*,B*分别为A,B的伴随矩阵,则
设A=E-ξξT,其中层为n阶单位矩阵,ξ是n维非零列向量,ξT是ξ的转置.证明:A2=A的充要条件是ξTξ=1;
设二次型f(x1,x2,x3)=5x12+ax22+3x32一2x1x2+6x1x3-6x2x3的矩阵合同于(Ⅰ)求常数a;(Ⅱ)用正交变换法化二次型f(x1,x2,x3)为标准形.
设f(x)在[a,b]上连续且单调增加,试证:
用配方法化下列二次型为标准形:f(x1,x2,x3)=x12+2x22—5x32+2x1x2—2x1x3+2x2x3.
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使
设X1,X2,…,Xn是取自均匀分布在[0,θ]上的一个样本,试证:Tn=max{X1,X2,…,Xn}是θ的相合估计.
随机试题
A.眼电图B.视网膜电图a波C.视网膜电图b波D.图形视网膜电图E.视觉诱发电位神经节细胞检查应选择
巨噬细胞集落刺激因子是指
A.商路B.细辛C.白前D.防己E.虎杖维管束次生组织不发达,其外侧有韧皮部细胞的是()
企业所得税法公布前已经批准设立的企业,依照当时的税收法律、行政法规规定,享受低税率优惠的,按照国务院规定,可以在本法施行后()年内,逐步过渡到本法规定的税率.
()就是运用多个指标对评价对象进行评价,以得出综合性结论的方法。
供热管网的各种附件中,能承受三向位移和荷载的是()。
根据《中华人民共和国遗产税暂行条例(草案)》的规定,执行遗嘱及管理遗产的直接必要费用可以按应征税遗产总额的()计算的金额扣除,但最高不能超过()元。
同步性是多媒体通信的一项重要特征,它是指多媒体通信在终端上显现的图像、声音和文字以同步的方式进行工作。下列选项中,()不是同步性在多媒体通信系统中需要实现的层面。
设ψ(x)是以2π为周期的连续函数,且φ(x)=ψ(x),φ(0)=0.(1)求方程y’+ysinx=ψ(x)ecosx的通解;(2)在(1)中方程是否有以2π为周期的解?若有,请写出所需条件,若没有,请说明理由.
假设日标出现在射程之内的概率为0.7,这时射击命中目标的概率为0.6,则在两次独立射击中至少有一次命中目标的概率α=_________.
最新回复
(
0
)