首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶实对称矩阵,A的特征值是λ1=1,λ2=2,λ3=一1,且α1=分别是λ1,λ2对应的特征向量,A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量是β=,求a及λ0的值,并求矩阵A.
设A是三阶实对称矩阵,A的特征值是λ1=1,λ2=2,λ3=一1,且α1=分别是λ1,λ2对应的特征向量,A的伴随矩阵A*有特征值λ0,λ0所对应的特征向量是β=,求a及λ0的值,并求矩阵A.
admin
2017-07-26
71
问题
设A是三阶实对称矩阵,A的特征值是λ
1
=1,λ
2
=2,λ
3
=一1,且α
1
=
分别是λ
1
,λ
2
对应的特征向量,A的伴随矩阵A
*
有特征值λ
0
,λ
0
所对应的特征向量是β=
,求a及λ
0
的值,并求矩阵A.
选项
答案
由题设有A
*
β=λ
0
β,于是AA
*
β=λ
0
Aβ,而AA
*
=|A|E,从而有Aβ=[*]的特征向量. 又α
1
,α
2
是实对称矩阵A属于不同特征值λ
1
,λ
2
的特征向量,必正交,即有 α
1
T
α
2
=a一1一a(a+1)+2=0,解得a=±1. 设α
3
=[*]为A的对应于λ
1
=一1的特征向量,由A是实对称矩阵知,α
3
与α
1
,α
2
均正交,即 [*] 由于β也为A的特征向量,应与α
1
,α
2
,α
3
中某一个成比例,显然不成立,故a=1不合题意. 当a=一1时,方程组为 [*] β与α
3
成比例,可见β也是A对应于特征值λ
3
=一1的特征向量,且有[*]=λ
1
λ
2
=2. 故a=一1,λ
0
=2. 由Aα
i
=λ
i
ai(i=1,2,3),有A[α
1
,α
2
,α
3
]=[λ
1
α
1
,λ
2
α
2
,λ
3
α
3
],于是 A=[λ
1
α
1
,λ
2
α
2
,λ
3
α
3
][α
1
,α
2
,α
3
]
—1
[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/PgH4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 D
A、 B、 C、 D、 A
设A是n阶反对称矩阵,证明:如果λ是A的特征值,那么一λ也必是A的特征值.
设向量组a1,a2,a3线性相关,向量组a2,a3,a4线性无关,问:(Ⅰ)a1能否由a2,a3,线性表出?证明你的结论.(Ⅱ)a4能否由a1,a2,a3铴线性表出?证明你的结论.
设其导函数在x=0处连续,则λ的取值范围是__________.
设A为n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明丨A丨≠0.
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设X,Y相互独立且都服从标准正态分布,则E|X—y|=__________,D|X—Y|=__________.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=.(1)记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;(2)二次型g(x)=XTAX是否与f(x1,x2,…,xn)合同?
设函数f(x)和g(x)在区间[a,b]上连续,在区间(a,b)内可导,且f(a)=g(b)=0,g’(x)<0,试证明存在ξ∈(a,b)使
随机试题
为了保证建设工程的实施能够有足够的时间、空间、人力、财力和物力来保证计划的可行性,首先应在充分考虑( )等因素的前提下制定计划。
下列选项中,不属于贷前调查方法的是()。
下列对税负转嫁的说法,正确的是()。
生产物流控制内容不包括()。
在西方教育史上,被认为史现代教育代言人的是()
单位举办绿色环保宣传周活动,但是没有专项经费,宣传中也不允许耗费纸张,你怎么开展此次活动?
按照《巴塞尔协议Ⅲ》的要求,为了防止银行信贷增长过快并导致系统性风险的积累,要求银行在经济上行期提取一定比例的(),以便经济下行时释放。
在FDM中,主要通过(1)技术,使各路信号的带宽(2)。使用FDM的所有用户(3)。从性质上说,FDM比较适合于传输(4),FDM的典型应用是(5)。
Itisduetotheinventionofthecomputerthatmanhasbeenabletoworksomanywondersinthepastfewyears.Acase______is
A.decreasingB.underlinesC.deliveredD.missionsE.becauseF.putoffG.demandH.thoughI.playJ.improvingK.t
最新回复
(
0
)