首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2018年] 设A,B为n阶矩阵,记r(X)为矩阵X的秩,(XY)表示分块矩阵,则( ).
[2018年] 设A,B为n阶矩阵,记r(X)为矩阵X的秩,(XY)表示分块矩阵,则( ).
admin
2019-05-10
40
问题
[2018年] 设A,B为n阶矩阵,记r(X)为矩阵X的秩,(XY)表示分块矩阵,则( ).
选项
A、r(AAB)=r(A)
B、r(A BA)=r(A)
C、r(A B)=max{r(A),r(B)}
D、r(A B)=r(A
T
B
T
)
答案
A
解析
利用矩阵秩的有关结论或举特例验证之.
易知r(A AB)≥r(A).又由分块矩阵的乘法,可知(A AB)=A(E B),因此
r(A AB)≤min(r(A),r(E B)),
从而 r(A AB)≤r(A),
所以r(A AB)=r(A),故选项(A)正确.
转载请注明原文地址:https://kaotiyun.com/show/PjV4777K
0
考研数学二
相关试题推荐
设A为n阶实对称矩阵,P是n阶可逆矩阵,已知n维列向量α是A的属于特征值λ的特征向量,则矩阵(P一1AP)T属于特征值λ的特征向量是()
设fn(χ)=χ+χ2+…+χn(n≥2).(1)证明方程fn(χ)=1有唯一的正根χn;(2)求χn.
设f(χ)=3χ2+Aχ-3(χ>0),A为正常数,问A至少为多少时,f(χ)≥20?
证明:若矩阵A可逆,则其逆矩阵必然唯一.
设抛物线y=aχ2+bχ+c(a<0)满足:(1)过点(0,0)及(1,2);(2)抛物线y=aχ2+bχ+c与抛物线y=-χ2+2χ所围图形的面积最小,求a,b,c的值.
设A是三阶矩阵,其特征值是1,2,3,若A与B相似,求|B*+E|.
设向量组线性相关,但任意两个向量线性无关,求参数t.
设α1,α2,…,αm,β1,β2,…,βn线性无关,而向量组α1,α2,…,αm,γ线性相关.证明:向量γ可由向量组α1,α2,…,αm,β1,β2,…,βn线性表示.
设A=(aij)是三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式,若aij+Aij=0(i,j=1,2,3),则|A|=_________。
随机试题
高钾血症时,血清钾高于A.5mmmol/LB.4.5mmol/LC.4mmol/lD.5.5mmol/LE.3.5mmol/L
火陷形成的主要原因是
强心甾烯蟾毒类可发生哪种反应( )。
女性,45岁,偶然发现左乳房肿块,直径约2cm,质较硬,无压痛,与皮肤有少许粘连。左侧腋下可扪及1cm大小肿大的淋巴结。关于患者术后进行功能锻炼的方法正确的是
下列哪些机构是国际性的常设仲裁机构?
信贷是指一切以实现()为条件的价值运动形式。
根据以下资料。回答问题。A市统计局在该市范围内做了一项调查,抽取了5000名18到70周岁且在2015年有过网购经历的居民。结果显示:受访者2015年人均网购次数为19.4次。从分组情况看,有三类人群使用网购相对频繁:一是年轻群体,35岁以下的受
用于牙周袋深度检查的工具是()。
AspeciallabattheUniversityofChicagoisbusyonly【C1】______.Itisadream【C2】______whereresearchersareatwork【C3】___
Withhousingpricesdownsignificantlyinmanypartsofthecountryandinterestrateslow,itmaybeanaffordabletimefortwe
最新回复
(
0
)