首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵 求A的特征值和特征向量;
设n阶矩阵 求A的特征值和特征向量;
admin
2018-08-03
16
问题
设n阶矩阵
求A的特征值和特征向量;
选项
答案
1° 当b≠0时, |λE A|=[*]=[λ一1一(n一1)b][λ一(1—b)
n—1
, 故A的特征值为λ
1
=1+(n一1)b,λ
2
=…=λ
n
=1一b. 对于λ
1
=1+(n一1)b,设对应的一个特征向量为ξ
1
,则 [*]=ξ
1
=[1+(n一1)b]ξ
1
解得ξ
1
=(1,1,…,1)
T
,所以,属于λ
1
的全部特征向量为 kξ
1
=k(1,1,…,1)
T
,其中k为任意非零常数. 对于λ
2
=…=λ
n
=1—b,解齐次线性方程组[(1—b)E—A]x=0.由 [*] 解得基础解系为ξ
2
=(1,一1,0,…,0)
T
,ξ
3
=(1,0,一1,…,0)
T
,…,ξ
n
=(1,0,0,…,一1)
T
.故属于λ
2
=…=λ
n
的全部特征向量为 k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
,其中k
2
,k
3
,…,k
n
为不全为零的任意常数. 2° 当b=0时,A=E,A的特征值为λ
1
=λ
2
=…=λ
n
=1,任意n维非零列向量均是特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/Prg4777K
0
考研数学一
相关试题推荐
设A,B为两个n阶矩阵,下列结论正确的是().
f(x)在[_一1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"’(ξ)=3.
设函数f(x)在x=1的某邻域内有定义,且满足|f(x)一2ex|≤(x一1)2,研究函数f(x)在x=1处的可导性.
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程=0变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A为三阶实对称矩阵,α1=(a,一a,1)T是方程组AX=0的解,α2=(a,1,1—a)T是方程组(A+E)X=0的解,则a=___________.
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=___________.
求幂级数的和函数.
对于任意二随机变量X和Y,与命题“X和Y不相关”不等价的是
随机试题
谈判要素不包括()
女,39岁。婚后8年未避孕未怀孕,月经规律,痛经重。月经来潮12小时子宫内膜活检为分泌期子宫内膜,B超下通液输卵管通而不畅。男方精液化验精子数6200万/ml,活力60%。月经干净后2天超声检查发现右附件5cm×5cm×3cm液性暗区伴密集光点,最
下列选项中,属于氧化磷酸化抑制剂的是()
下列关于正当防卫的说法正确的是?
期货公司申请金融期货交易结算业务资格,其注册资本应不低于人民币( )万元,申请日前2个月的风险监管指标应持续符合规定的标准。
迦牟尼初转发轮地为()。
现代认知心理学把人的记忆系统分为瞬间记忆和长时记忆两个子系统.()
一份中学数学竞赛试卷共15题,答对一题得8分,答错一题或不做答均倒扣4分。有一个参赛学生得分为72,则这个学生答对的题目数是()。
Thelower-levelclasses(knownassubclassesorderivedclasses)(73)stateandbehaviorfromthehigher-levelclass(knownasasup
Jennifer:Thegreenhouseeffectmightbecausingthechange,butit’sacyclethat’sbeentrackedforaboutahundredyear
最新回复
(
0
)