首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵 求A的特征值和特征向量;
设n阶矩阵 求A的特征值和特征向量;
admin
2018-08-03
19
问题
设n阶矩阵
求A的特征值和特征向量;
选项
答案
1° 当b≠0时, |λE A|=[*]=[λ一1一(n一1)b][λ一(1—b)
n—1
, 故A的特征值为λ
1
=1+(n一1)b,λ
2
=…=λ
n
=1一b. 对于λ
1
=1+(n一1)b,设对应的一个特征向量为ξ
1
,则 [*]=ξ
1
=[1+(n一1)b]ξ
1
解得ξ
1
=(1,1,…,1)
T
,所以,属于λ
1
的全部特征向量为 kξ
1
=k(1,1,…,1)
T
,其中k为任意非零常数. 对于λ
2
=…=λ
n
=1—b,解齐次线性方程组[(1—b)E—A]x=0.由 [*] 解得基础解系为ξ
2
=(1,一1,0,…,0)
T
,ξ
3
=(1,0,一1,…,0)
T
,…,ξ
n
=(1,0,0,…,一1)
T
.故属于λ
2
=…=λ
n
的全部特征向量为 k
2
ξ
2
+k
3
ξ
3
+…+k
n
ξ
n
,其中k
2
,k
3
,…,k
n
为不全为零的任意常数. 2° 当b=0时,A=E,A的特征值为λ
1
=λ
2
=…=λ
n
=1,任意n维非零列向量均是特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/Prg4777K
0
考研数学一
相关试题推荐
设随机变量X的密度函数为f(x)=,则P{|X—E(X)|<2D(X)}=___________.
f(x)在[_一1,1]上三阶连续可导,且f(一1)=0,f(1)=1,f’(0)=0.证明:存在ξ∈(一1,1),使得f"’(ξ)=3.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
设函数f(x,y)可微,,求f(x,y).
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
若α1,α2,α3是三维线性无关的列向量,A是三阶方阵,且Aα1=α1+α2,Aα2=α2+α3,Aα3=α3+α1,则|A|=___________.
设平面曲线L上一点M处的曲率半径为ρ,曲率中心为A,AM为L在点M处的法线,法线上的两点P,Q分别位于L的两侧,其中P在AM上,Q在AM的延长线AN上,若P,Q满足|AP|.|AQ|=ρ2,称P,Q关于L对称.设L:y=.(1)求点M,使得L在M
设A是n阶非零矩阵,A*是A的伴随矩阵,AT是A的转置矩阵,如果AT=A*,证明任一n维列向量均可由矩阵A的列向量线性表出.
设3阶矩阵A的特征值为1,2,2,E为3阶单位矩阵,则|4A-1-E|=____________.
已知A=是n阶矩阵,求A的特征值、特征向量并求可逆矩阵P使P-1AP=A.
随机试题
以“只要数a是偶数,那么数a就能被b整除”为前提,加上另一个前提:“数a能被b整除”,能否必然得出结论?为什么?
Theschoolteachersarerequiredto______themarkedexaminationpapersintopassesandfailures.
各类休克共同的病理生理改变是
数控机床中的半闭环伺服系统与闭环伺服系统在结构上的主要区别是:()。
商业银行发行资本性债券筹资的优点有()。
商业银行资产业务包括()。
2012年1~4月份,民间固定资产投资46869亿元,比上年同期增长27.3%.增速较1~3月份回落1.6个百分点,比同期固定资产投资(不含农户)增速高7.1个百分点。民间固定资产投资占固定资产投资的比重为62%,比1~3月份提高0.1个百分点。
自定义的异常类可从下列()类继承。
Thebesttitleforthispassageis______.Thepilotshipprovedthattheexperimentwasfeasible;however,itdidnotduplicate
A、Fridgeandstereosystem.B、Watches.C、CDandbooks.D、Television.D细节题。男士提到电视太旧了,不值得投保。
最新回复
(
0
)