首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在命题 ①若f(x)在x=a处连续,且|f(x)|在x=a处可导,则f(x)在x=a处必可导, ②若φ(x)在x=a处连续,则f(x)=(x一a)φ(x)在x=a处必可导, ③若φ(x)在x=a处连续,则f(x)=(x一a)|φ(x)|在x=a
在命题 ①若f(x)在x=a处连续,且|f(x)|在x=a处可导,则f(x)在x=a处必可导, ②若φ(x)在x=a处连续,则f(x)=(x一a)φ(x)在x=a处必可导, ③若φ(x)在x=a处连续,则f(x)=(x一a)|φ(x)|在x=a
admin
2020-03-24
36
问题
在命题
①若f(x)在x=a处连续,且|f(x)|在x=a处可导,则f(x)在x=a处必可导,
②若φ(x)在x=a处连续,则f(x)=(x一a)φ(x)在x=a处必可导,
③若φ(x)在x=a处连续,则f(x)=(x一a)|φ(x)|在x=a处必不可导,
④若f(x)在x=a处连续,且
存在,则f(x)在x=a处必可导
中正确的是
选项
A、①②.
B、①③.
C、①②③.
D、②④.
答案
A
解析
①是正确的.设f(a)≠0,不妨设f(a)>0,由于f(x)在x=a处连续,故存在δ>0,当x∈(a一δ,a+δ)时f(x)>0,于是在此区间上f(x)≡|f(x)|,故f’(a)=[|f(x)|]’
x=a
存在.若f(a)<0可类似证明.
若f(a)=0,则
所以由夹逼定理得f’(a)=
=0.
②是正确的.因为
=φ(a),所以f’(a)=φ(a).
③是错误的.由②正确即知③是错误的.无妨取反例:φ(x)=x
2
,则
f(x)=(x一a)|φ(x)|=(x一a)x
2
,
=a
2
,即f(x)在x=a处可导.
④也不正确.可取反例:f(x)=|x|,显然f(x)在x=0处不可导,但
存在.
综上分析,应选A.
转载请注明原文地址:https://kaotiyun.com/show/Psx4777K
0
考研数学三
相关试题推荐
设有齐次线性方程组Ax=0和Bx=0,其中A、B均为m×n矩阵.现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B);②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
设{an)与{bn}为两个数列,下列说法正确的是().
设A是m×n矩阵,B是n×m矩阵.则
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα一2A2α,那么矩阵A属于特征值λ=一3的特征向量是()
已知向量组α1,α2,α3,α4线性无关,则向量组2α1+α3+α4,α2-α4,α3+α4,α2+α3,2α1+α2+α3的秩是()
设幂级数的收敛半径分别为R1,R2,且R1<R2,设的收敛半径为R0,则有().
设A,B均是n阶矩阵,下列命题中正确的是
方程f(x)==0的根的个数为
设y1,y2是一阶线性非齐次微分方程y’+p(x)y=q(x)的两个特解,若常数λ,μ使λy1+μy2是该方程的解,λy1—μy2是该方程对应的齐次方程的解,则()
求下列积分(其中n=1,2,3,…):
随机试题
消费者无权要求经营者提供的商品和服务符合保障人身、财产安全的要求。
社会主义上层建筑是先于它的经济基础而产生,这一事实说明()
试述正常心脏听诊的顺序。
噪声污染的特征有()。
我国《票据法》规定,支票的绝对记载事项可以授权补记的有()。
简述班集体的教育作用。
“十二五”规划指出要把“国富民强”变为“民富国强”,请你谈谈这意味着什么?
在一定条件下,法律规范的效力是可以超出国家管辖的领域之外的。()
近年来浙江省商品交易市场呈现稳步发展态势。2009年,浙江省共有亿元以上商品交易市场670家,比上年增加31家,营业面积2298万平方米,出租摊位39万个,实现成交额964.7亿元,比上年增长7.8%。从市场成交额看,成交额达10亿元以上的商品交
阅读以下函数说明和Java代码,将应填入(n)处的字句写在对应栏内。[说明]很多时候,希望某些类只有一个或有限的几个实例,典型解决方案是所谓单身(Singleton)模式。但在多线程情况下,Singleton模式有可能出现问题,需要进行
最新回复
(
0
)