首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在区间[0,1]上连续,且∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy。
设函数f(x)在区间[0,1]上连续,且∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy。
admin
2019-01-19
42
问题
设函数f(x)在区间[0,1]上连续,且∫
0
1
f(x)dx=A,求∫
0
1
dx∫
x
1
f(x)f(y)dy。
选项
答案
交换积分次序可得 ∫
0
1
dx∫
x
1
f(x)f(y)dy=∫
0
1
dy∫
0
y
f(x)f(y)dx=∫
0
1
dx∫
0
x
f(y)f(x)dy, 因此,可得 ∫
0
1
dx∫
x
1
f(x)f(y)dy=[*][dx∫
0
1
f(x)f(y)dy+∫
0
dx∫
0
x
f(x)f(y)dy] =[*]∫
0
1
dx∫
0
1
f(x)f(y)dy=[*]∫
0
1
f(x)dx·∫
0
1
f(y)dy=[*]A
2
。
解析
转载请注明原文地址:https://kaotiyun.com/show/Q6P4777K
0
考研数学三
相关试题推荐
求函数f(χ,y)=χy(a-χ-y)的极值.
设m×n矩阵A的秩为r,且r<n,已知向量η是非齐次线性方程组Aχ=b的一个解.试证:方程组Aχ=b存在n-r+1个线性无关的解,而且这n-r+1个解可以线性表示方程组Aχ=b的任一解.
设(X,Y)的分布函数为:F(χ,y)=A(B+arctan)(C+arctan),-∞<χ,y<+∞求:(1)常数A,B,C;(2)(X,Y)的密度;(3)关于X、Y的边缘密度.
已知线性方程组=0有非零解,而且矩阵A=是正定矩阵.(1)求常数a的值;(2)求当XTX=2时,XTAX的最大值,其中X=(χ1,χ2,χ3)T为3维实向量.
计算二重积分其中D={(x,y)||x|≤1,|y|≤1).
微分方程xlnxdy+(y—lnx)dx=0满足条件y(e)=1的解为_________.
计算积分I=.
设积分区域D={(x,y)|0≤x≤π,0≤y≤π},计算二重积分I=sinxsinymax{x,y}dxdy.
已α1=(1,一2,1,0,0),α2=(1,一2,0,1,0),α3=(0,0,1,一1,0),α4=(1,一2,3,一2,0)是线性方程组的解向量,问α1,α2,α3,α4是否构成此方程组的基础解系,假如不能,是多了还是少了?若多了,如何去除?若少
(Ⅰ)求y"一7y’+12y=x满足初始条件y(0)=的特解;(Ⅱ)求y"+a2y=8cosbx的通解,其中a>0,b>0为常数;(Ⅲ)求y"+4y’+4y=ex的通解,其中a为常数;(Ⅳ)求y"+y=x3一x+2的通解.
随机试题
左心衰竭病人新近出现右心衰竭,会表现为
毛泽东思想是马克思主义中国化进程中的第一个重大成果。
患者,女,20岁。上前牙松动3年,检查见上切牙松动Ⅱ度,扇形移位,口腔卫生较好,初步印象为局限性青少年牙周炎。对该患者的治疗措施中,不适当的是
Ⅱ/Ⅲ类仪表着陆系统应安装()远场监视器。
根据涉外经济法律制度的规定,下列关于保障措施的表述中,不正确的是()。
下列各项关于政府补助的处理,说法不正确的有()。
Wherearethespeakers?
Someconsumerresearchersdistinguish【C1】______"rational"motivesand"emotional"(or"non-rational"motives.Theyusetheterm
A、Inthelate1940s.B、Inthe1970s.C、Inthelate1980s.D、Inthe1990s.A
NewLightinInternetServiceAnewinternetserviceLookingfor"TheFugitive?"Didn’tgetenough"EightIsEnough?"Would
最新回复
(
0
)