首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设m×n矩阵A的秩为r,且r<n,已知向量η是非齐次线性方程组Aχ=b的一个解.试证:方程组Aχ=b存在n-r+1个线性无关的解,而且这n-r+1个解可以线性表示方程组Aχ=b的任一解.
设m×n矩阵A的秩为r,且r<n,已知向量η是非齐次线性方程组Aχ=b的一个解.试证:方程组Aχ=b存在n-r+1个线性无关的解,而且这n-r+1个解可以线性表示方程组Aχ=b的任一解.
admin
2017-06-26
48
问题
设m×n矩阵A的秩为r,且r<n,已知向量η是非齐次线性方程组Aχ=b的一个解.试证:方程组Aχ=b存在n-r+1个线性无关的解,而且这n-r+1个解可以线性表示方程组Aχ=b的任一解.
选项
答案
由秩(A)=r<n,知方程组Aχ=0的基础解系含n-r个向量,设Aχ=0的基础解系为:ξ
1
,ξ
2
,…,ξ
n-r
,则可证明:向量η,ξ
1
+η,…,ξ
n-r
+η是满足题意的n-r+1个向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/PjH4777K
0
考研数学三
相关试题推荐
设有三维列向量(Ⅰ)β可由a1,a2,a3,线性表示,且表达式唯一;(Ⅱ)β可由a1,a2,a3线性表示,且表达式不唯一;(Ⅲ)β不能由a1,a2,a3线性表示.
向量组a1,a2,…,am线性无关的充分必要条件是().
设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记(Ⅱ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=l时,求D(T).
已知3阶矩阵B为非零向量,且B的每一个列向量都是方程组(Ⅰ)求λ的值;(Ⅱ)证明|B|=0.
设f(x)在[0,1]上连续,且0≤f(x)≤1,试证在[0,1]内至少存在一个ξ,使f(ξ)=ξ.
设A是m×n矩阵,C是n阶可逆矩阵,矩阵A的秩为r,矩阵B=AC的秩为r1,则().
设线性方程组(Ⅰ)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),且已知β1,β2是该方程组的两个解,其中β1=,写出此方程组的通解.
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
设a1,a2,…,as均为n维列向量,A是m×n矩阵,则下列选项正确的是().
随机试题
肱骨干骨折,伤及桡神经,患肢应出现
A.卵泡发育B.抑制卵母细胞成熟C.排卵D.子宫内膜发生增生期变化E.子宫内膜发生分泌期变化FSH能使
尿蛋白加热乙酸法试验中结果呈明显白色颗粒状混浊、无絮状沉淀,应报告为
下列属于房地产投资缺点的是()。
2014年6月1日,人民法院依法受理了A公司的破产清算申请。根据破产法律制度的规定,涉及A公司财产的下列行为中,管理人有权请求人民法院撤销的有()。
Inrecentyearsanewfarmingrevolutionhasbegun,onethatinvolvesthe【1】oflifeatafundamentallevel-thegene.Thestudyo
Hepausedforamoment,thencontinuedspeaking.
Whatdoweknowaboutthewoman’sfamily?
A、 B、 C、 C问题Whyishe一?可以知道回答的主语应该也是he。(A)可以用于回答when引导的问句。(B)作为回答不够具体,另外该句是在确认信息时使用的。(C)给出了具体的理由,找到了更好的工作,所以要离
Today,mostcountriesintheworldhavecanals.Manycountrieshavebuiltcanalsnearthecoast,andparallel【C1】______thecoast
最新回复
(
0
)