首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设m×n矩阵A的秩为r,且r<n,已知向量η是非齐次线性方程组Aχ=b的一个解.试证:方程组Aχ=b存在n-r+1个线性无关的解,而且这n-r+1个解可以线性表示方程组Aχ=b的任一解.
设m×n矩阵A的秩为r,且r<n,已知向量η是非齐次线性方程组Aχ=b的一个解.试证:方程组Aχ=b存在n-r+1个线性无关的解,而且这n-r+1个解可以线性表示方程组Aχ=b的任一解.
admin
2017-06-26
49
问题
设m×n矩阵A的秩为r,且r<n,已知向量η是非齐次线性方程组Aχ=b的一个解.试证:方程组Aχ=b存在n-r+1个线性无关的解,而且这n-r+1个解可以线性表示方程组Aχ=b的任一解.
选项
答案
由秩(A)=r<n,知方程组Aχ=0的基础解系含n-r个向量,设Aχ=0的基础解系为:ξ
1
,ξ
2
,…,ξ
n-r
,则可证明:向量η,ξ
1
+η,…,ξ
n-r
+η是满足题意的n-r+1个向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/PjH4777K
0
考研数学三
相关试题推荐
向量组a1,a2,…,as线性无关的充分条件是().
设总体X的概率密度为p(x,λ)=其中A>0为未知参数,a>0是已知常数,试根据来自总体X的简单随机样本X1,X2,…,X,求λ的最大似然估计量
微分方程的通解是_________.
向量组a1,a2,…,am线性无关的充分必要条件是().
设n阶矩阵A与B等价,则必有().
设X1,X2,…,Xn是来自正态总体X的简单随机样本,Y1=1/6(X1+…+X6),Y2=1/3(X7+X8+X9),S2=(X1-Y2)2,Z=,证明统计量Z服从自由度为2的t分布.
在经济学中,称函数Q(x)=A[δK-x+(1-δ)L-x]-(1/x)为固定替代弹性生产函数,而称函数生产函数(简称C-D生产函数).试证明:当x→0时,固定替代弹性生产函数变为C-D生产函数,即有
设线性方程组(Ⅰ)证明:若a1,a2,a3,a4两两不相等,则此线性方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),且已知β1,β2是该方程组的两个解,其中β1=,写出此方程组的通解.
证明方程在区间(0,+∞)内有且仅有两个不同实根.
设曲线方程为y=e-x(x≥0).(Ⅰ)把曲线y=e-x(x≥0)、x轴、y轴和直线x=ξ(ξ>0)所围成平面图形绕x轴旋转一周得一旋转体,求此旋转体的体积V(ξ),求满足(Ⅱ)在此曲线上找一点,使过该点的切线与两个坐标轴所夹平面图形的面积最大,并求出
随机试题
A、Dotheinteriordecoration.B、Makeashoppinglist.C、Buythematerials.D、Makeadesignofdecoration.B
对于急性中毒患者,以下属于促进已吸收毒物排出的为()
心理评估的常用方法,不包括
男,20岁。发热2周,体温38~39℃,检查皮肤散在紫癜,颈部及腋下可触及0.5cm×1.5cm大小淋巴结5~6个,脾肋下3em,血红蛋白85g/L,白细胞10×l09/L,血小板25×109/L。此患者在发热、头痛、呕吐第2日做脑脊液检查,最可能的发
投资估算中,设备购置费=()。
()审批承建单位编制的年、季、月度施工进度计划。
()是反映经济活动、确认产权关系、规范收益分配的会计技术标准,是生成和提供会计信息的重要依据,也是政府调控经济活动、规范经济秩序和开展国际经济交往等的重要手段。
实行回避制度的单位,单位领导人的直系亲属不得担任本单位的()。
非继续性合同,是指履行为一次性行为的合同,即一次给付便使合同内容实现。继续性合同是指履行在一定的继续的时间内完成,而不是一时或一次完成的合同。根据以上定义,下列属于非继续性合同的是()。
Onlywhen______possibleforallthepeoplepresenttomakeafinaldecision.
最新回复
(
0
)