首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2000年试题,十一)函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式 (1)求导数f’(x); (2)证明:当x≥0时,成立不等式:e-sf(x)≤1.
(2000年试题,十一)函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式 (1)求导数f’(x); (2)证明:当x≥0时,成立不等式:e-sf(x)≤1.
admin
2019-04-17
95
问题
(2000年试题,十一)函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式
(1)求导数f
’
(x);
(2)证明:当x≥0时,成立不等式:e
-s
f(x)≤1.
选项
答案
由题设[*]知[*]此式两边对x求导,得(x+1)f
’’
(x)+f
’
(x)+f(x)+(x+1)f
’
(x)一f(x)=0,即(x+1)
’’
(x)+(x+2).f
’
(x)=0此为关于f
’
(x)的可分离变量方程,令f
’
(x)=u,则f
’’
(x)=u
’
,因此[*]两边积分可得[*]即[*](1)又由原题设等式[*]知f
’
(0)+f(0)=0,且已知条件f(0)=1可推知f
’
(0)=一1,代入(1)式,解得C=-1,所以[*]关于(2)中不等式的证明,可采用以下两种方法:(I)由(1)已知结论f
’
(x)[*]当x≥0时,f
’
(x)<0,从而f(x)单调减少.又由f(0)=1,知f(x)≤f(0)=1,x≥0引入辅助函数φ(x)=f(x)一e
-x
,显然有φ(0)=0,且[*]从而φ(x)单调增加,即当x≥0时,有φ(x)≥φ(0),即φ(0)≥e
-x
.综上,当x≥0时,e
-s
f(x)≤1成立.(Ⅱ)同样由(1)知,[*]即[*]则当x≥0时,[*]所以e
-2
≤f(x)≤1[评注]如果已知f
’
(x)的表达式或某种性质,但很难通过不定积分求出f(x)的表达式,则可以通过变限积限积分建立f(x)与f
’
(x)之间的联系,即有[*]要注意解题技巧.
解析
转载请注明原文地址:https://kaotiyun.com/show/QDV4777K
0
考研数学二
相关试题推荐
求下列变限积分函数的导数:(Ⅰ)F(x)=,求F’(x)(x≥0);(Ⅱ)设f(x)处处连续,又f’(0)存在,F(x)=,求F"(x)(-∞<x<+∞).
设z=f(exsiny,x2+y2),且f(u,v)二阶连续可偏导,求
在半径为a的半球外作一外切圆锥体,要使圆锥体体积最小,问高度及底半径应是多少?
函数.在点x=1处是否可导?为什么?
已知y"+(x+e2y)y’3=0,若把x看成因变量,y看成自变量,则方程化为什么形式?并求此方程通解.
设4阶矩阵A=(α,γ1,γ2,γ3),B=(β,γ1,γ2,γ3),|A|=2,|B|=3,求|A+B|.
设函数f(u,v)由关系式f[xg(y,y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=_________。
讨论下列函数的连续性并判断间断点的类型:
∫arcsincarccosxdx
设f(χ)可导且f′(0)≠0,且求.
随机试题
对2型肥胖型糖尿病伴高脂血症者可首选()。
一台三相电动机运行于中性点接地的低压电力系统中,操作员碰及外壳导致意外触电事故,事故的原因是()。
下列()项特点是先导产业所具有的。
交钥匙合同的工作范围是()。
下列白酒属于浓香型的有()。
国务院各部门和地方人民政府的规章不得称“条例”。()
花园怎样反映人类的基本诉求——2013年英译汉及详解Itisspeculatedthatgardensarisefromabasicneedintheindividualswhomadethem:theneedfor
TheDeathofaSpouseFormuchoftheworld,thedeathofRichardNixonwastheendofacomplexpubliclife.Butresearcher
CollegeStudyingI.The【T1】ofpreparationforcollegestudying【T1】______—Collegestudyingiswellacceptedbothintheoryandi
Themadmanwasputinthesoft-paddedcelllesthe______(injure)himself.
最新回复
(
0
)