首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2000年试题,十一)函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式 (1)求导数f’(x); (2)证明:当x≥0时,成立不等式:e-sf(x)≤1.
(2000年试题,十一)函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式 (1)求导数f’(x); (2)证明:当x≥0时,成立不等式:e-sf(x)≤1.
admin
2019-04-17
68
问题
(2000年试题,十一)函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式
(1)求导数f
’
(x);
(2)证明:当x≥0时,成立不等式:e
-s
f(x)≤1.
选项
答案
由题设[*]知[*]此式两边对x求导,得(x+1)f
’’
(x)+f
’
(x)+f(x)+(x+1)f
’
(x)一f(x)=0,即(x+1)
’’
(x)+(x+2).f
’
(x)=0此为关于f
’
(x)的可分离变量方程,令f
’
(x)=u,则f
’’
(x)=u
’
,因此[*]两边积分可得[*]即[*](1)又由原题设等式[*]知f
’
(0)+f(0)=0,且已知条件f(0)=1可推知f
’
(0)=一1,代入(1)式,解得C=-1,所以[*]关于(2)中不等式的证明,可采用以下两种方法:(I)由(1)已知结论f
’
(x)[*]当x≥0时,f
’
(x)<0,从而f(x)单调减少.又由f(0)=1,知f(x)≤f(0)=1,x≥0引入辅助函数φ(x)=f(x)一e
-x
,显然有φ(0)=0,且[*]从而φ(x)单调增加,即当x≥0时,有φ(x)≥φ(0),即φ(0)≥e
-x
.综上,当x≥0时,e
-s
f(x)≤1成立.(Ⅱ)同样由(1)知,[*]即[*]则当x≥0时,[*]所以e
-2
≤f(x)≤1[评注]如果已知f
’
(x)的表达式或某种性质,但很难通过不定积分求出f(x)的表达式,则可以通过变限积限积分建立f(x)与f
’
(x)之间的联系,即有[*]要注意解题技巧.
解析
转载请注明原文地址:https://kaotiyun.com/show/QDV4777K
0
考研数学二
相关试题推荐
设f(x)在[0,1]连续,且对任意x,y∈[0,1]均有|f(x)-f(y)|≤M|x-y|,M为正的常数,求证:
按第一列展开,得:[*]
计算行列式
设函数f(x,y)连续,则二次积分等于()
设an=,证明:{an}收敛,并求.
[2017年]设函数y=y(x)由参数方程确定,则=________.
∫(arccosx)2dx
(1987年)(1)设f(χ)在[a,b]内可导,且f′(χ)>0,则f(χ)在(a,b)内单调增加.(2)设g(χ)在χ=c处二阶可导,且g′(c)=0,g〞(c)<0,则g(c)为g(χ)的一个极大值.
随机试题
中国在批准加入《承认与执行外国仲裁裁决公约》时作出的保留是_______、_______。
符合血友病特征的是
藁本的主治病证是()。
人员疏散分析常用的模型有()。
外部融资销售增长比就是销售收入每增加1元需要追加的外部融资额,下列关于“外部融资销售增长比”的表述中,不正确的是()。
某企业只生产一种产品,其产品成本计算采用标准成本计算系统,有关资料如下:(1)单位产品标准成本(2)本月生产及销售情况(3)月初材料2500千克,本月购入原材料12500千克,实际成本27500元;本月生产领用原材料
张某家住北京市东城区,在朝阳区有一处商业用房,市拆迁办(在西城区)决定对其房屋拆迁,张某不服,诉至法院,应由()受理。
数据冗余是指在两个或多个文件中重复出现的数据。冗余的存在可能导致数据的不一致性。()
古文经学家()为了反对今文经派根据隶定的古书穿凿附会而曲解经文,于是编成一部《说文解字》,共收小篆及其他古文字9353个,逐字注释其形体音义。
WhenyouareinEngland,youmustbeverycarefulinthestreetsbecausethetrafficdrivesontheleft.Beforeyoucrossastre
最新回复
(
0
)