首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2000年试题,十一)函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式 (1)求导数f’(x); (2)证明:当x≥0时,成立不等式:e-sf(x)≤1.
(2000年试题,十一)函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式 (1)求导数f’(x); (2)证明:当x≥0时,成立不等式:e-sf(x)≤1.
admin
2019-04-17
104
问题
(2000年试题,十一)函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式
(1)求导数f
’
(x);
(2)证明:当x≥0时,成立不等式:e
-s
f(x)≤1.
选项
答案
由题设[*]知[*]此式两边对x求导,得(x+1)f
’’
(x)+f
’
(x)+f(x)+(x+1)f
’
(x)一f(x)=0,即(x+1)
’’
(x)+(x+2).f
’
(x)=0此为关于f
’
(x)的可分离变量方程,令f
’
(x)=u,则f
’’
(x)=u
’
,因此[*]两边积分可得[*]即[*](1)又由原题设等式[*]知f
’
(0)+f(0)=0,且已知条件f(0)=1可推知f
’
(0)=一1,代入(1)式,解得C=-1,所以[*]关于(2)中不等式的证明,可采用以下两种方法:(I)由(1)已知结论f
’
(x)[*]当x≥0时,f
’
(x)<0,从而f(x)单调减少.又由f(0)=1,知f(x)≤f(0)=1,x≥0引入辅助函数φ(x)=f(x)一e
-x
,显然有φ(0)=0,且[*]从而φ(x)单调增加,即当x≥0时,有φ(x)≥φ(0),即φ(0)≥e
-x
.综上,当x≥0时,e
-s
f(x)≤1成立.(Ⅱ)同样由(1)知,[*]即[*]则当x≥0时,[*]所以e
-2
≤f(x)≤1[评注]如果已知f
’
(x)的表达式或某种性质,但很难通过不定积分求出f(x)的表达式,则可以通过变限积限积分建立f(x)与f
’
(x)之间的联系,即有[*]要注意解题技巧.
解析
转载请注明原文地址:https://kaotiyun.com/show/QDV4777K
0
考研数学二
相关试题推荐
设A为10×10矩阵,计算行列式|A一λE|,其中E为10阶单位矩阵,λ为常数.
设f(x)为[一a,a]上的连续偶函数,且f(x)>0,令F(x)=∫-aa|x-t|一f(t)dt证明F’(x)单调增加;
设n阶方阵A满足A2+3A一2E=O,求A-1及(A+E)-1.
A=,求作一个3阶可逆矩阵P,使得PTAP是对角矩阵.
设函数f(u)可微,且f’(2)=2,则z=f(x2+y2)在点(1,1)处的全微分dz|(1,1)=__________。
设f(χ)在[-a,a](a>0)上有四阶连续的导数,存在.(1)写出f(χ)的带拉格朗日余项的麦克劳林公式。(2)证明:存在ξ1,ξ2∈[-a,a],使得
求不定积分∫cos(lnχ)dχ.
求不定积分
f(arccosx)2dx.
[2017年]∫01dy∫y1dx=_________.
随机试题
下列等式或不等式中正确的共有
关于X线特性的叙述,正确的是
治理通货紧缩的主要措施有()。
我国国债主要分为()
某市大型商贸公司为增值税一般纳税人,兼营商品加工、批发、零售和进出口业务,2017年10月相关经营业务如下:(1)进口高档化妆品一批,支付国外的买价220万元、购货佣金6万元、国外的经纪费4万元;支付运抵我国海关地前的运输费用20万元、装卸费用和保险费用
在放学后、节假日或者假期等学校工作时间以外,学生自行滞留学校或者自行到校发生的造成学生人身损害后果的事故,学校不承担事故责任。()
一只装有动力桨的船,其单靠人工划船顺流而下的速度是水速的3倍。现该船靠人工划动从A地顺流到达B地,原路返回时只开足动力桨行驶,用时比来时少。问船在静水中开足动力桨行驶的速度是人工划船速度的多少倍?
联系实际论述在教学过程中为什么要处理好智力活动与非智力活动的关系。
需求定义必须具备下列哪些属性?Ⅰ.正确性,必要性Ⅱ.可理解,可测试,可维护Ⅲ.完备性,一致性Ⅳ.非冗余性Ⅴ.安全性
A、Hehadlosthisdriver’slicense.B、Hisidentificationwasn’tacceptable.C、Hedidn’thavehischeckbook.D、Heforgottobring
最新回复
(
0
)