首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
admin
2017-08-31
77
问题
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A
*
)
2
一4E的特征值为0,5,32.求A
-1
的特征值并判断A
-1
是否可对角化.
选项
答案
设A的三个特征值为λ
1
,λ
2
,λ
3
,因为B=(A
*
)
2
一4E的三个特征值为0,5,32,所以(A
*
)
2
的三个特征值为4,9,36,于是A
*
的三个特征值为2,3,6.又因为|A
*
|=36=|A|
3-1
,所以|A|=6. 由[*]=6,得λ
1
=3,λ
2
=2,λ
3
=1, 由于一对逆矩阵的特征值互为倒数,所以A
-1
的特征值为1,[*]. 因为A
-1
的特征值都是单值,所以A
-1
可以相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/QLr4777K
0
考研数学一
相关试题推荐
设a<b,证明不等式:
已知η1,η2,η3,η4是齐次方程组Ax=0的基础解系,则下列向量组中也是Ax=0基础解系的是
(2009年试题,18)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)可导,则存在ξ∈(a,b),使得f(b)一f(a)=f’(ξ)(b一a);
(2002年试题,十)设A,B为同阶方阵.当A,B均为实对称矩阵时,试证(1)的逆命题成立.
设3阶对称矩阵A的特征向量值λ1=1,λ2=2,λ3=-2,又a1=(1,-1,1)T是A的属于λ1的一个特征向量,记B=A5-4A3+E,其中E为3阶单位矩阵.(I)验证a1是矩阵B的特征向量,并求B的全部特征值与特征向量;(Ⅱ)求矩
判断下列各函数是否相同,并说明理由.
设λ1,λ2是矩阵A的两个特征值,对应的特征向量分别为α1,α2,则().
已知矩阵只有一个线性无关的特征向量,那么矩阵A的特征向量是____________.
设随机变量X的方差存在,分别就离散型和连续型情形证明“切比雪夫不等式”即对任意ε>0,有P{|X-EX|≥ε}≤DX/ε2.
随机试题
2016年率先实行国家监察体制改革试点的省级地方单位是()
窦性心动过速与不适宜性窦性心动过速的鉴别要点是
女性,56岁。以反复上腹部疼痛4年为主诉来诊,上腹痛无明显规律性,伴腹胀,反酸嗳气。查体:消瘦,贫血貌,舌红无苔,上腹轻压痛。胃镜检查示黏膜红白相间,以白为主,皱襞平坦,黏膜下血管透见,黏液湖缩小。黏膜活检示重度不典型增生。当前正确的治疗方法
A.夏枯草B.密蒙花C.谷精草D.青葙子E.决明子能清肝明目,散结消肿的中药是
我国的刑事诉讼法对刑事案件的地域管辖作了具体的规定,下列哪项说法是不正确的?()
高压电抗器保护装置单体调试套用相同电压等级送配电保护装置定额。
某企业只生产一种产品,单价4.5元,单位变动成本2.7元,预计明年固定成本90000元,产销量计划达225000件。则销量对利润的敏感系数为()。
乾清宫内匾额谁写的,秘密立储制度从谁开始,诏书存放的位置?
族群是在较大的社会文化体系中,由于客观上具有共同的渊源及由此延伸出的共同的文化,因此主观上自我认同并区别于其他群体的一群人。其中共同的渊源是指世系、血统、体质的相似;共同的文化是指相似的语言、宗教、习俗等。根据上述定义,下列属于族群的一项是()。
下列定义数组的语句中正确的是()。
最新回复
(
0
)