首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3 证明:任一三维非零向量β(β≠0)都是A2的特征向量,并求对应的特征值。
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3 证明:任一三维非零向量β(β≠0)都是A2的特征向量,并求对应的特征值。
admin
2014-08-18
37
问题
A是三阶矩阵,有特征值λ
1
=λ
2
=2,对应两个线性无关的特征向量为ξ
1
,ξ
3
,λ
2
=…2对应的特征向量是ξ
3
证明:任一三维非零向量β(β≠0)都是A
2
的特征向量,并求对应的特征值。
选项
答案
因A特征值λ
1
=λ=2.λ
2
=一2,故A
2
有特征值μ
1
=μ
2
=μ
3
=4.对应的特征向量仍是ξ
1
ξ
2
,ξ
3
且ξ
1
,ξ
2
,ξ
3
线性无关.故存在可逆阵P=[ξ
1
,ξ
2
,ξ
3
],使得P
-1
A
2
P=4E,A
2
=P(4E)P
-1
=4E,从而有对任意的β≠0,有A
2
β=4Eβ=4β,故知任意非零向量β都是A
2
的对应于λ=4的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/mg54777K
0
考研数学一
相关试题推荐
设函数f(x)满足f(1)=1,且有f’(x)=,证明:极限存在。
设f(x)在[0,+∞)上连续,满足0≤f(x)≤x,x∈[0,+∞),设a1≥0,an+1=f(an)(n=1,2,…),证明:设an=t,则有f(t)=t.
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x1与x2,都有|f(x1)-f(x2)|≤k|x1-x2|,证明:存在唯一的ξ∈[a,b]使f(ξ)=ξ.
设xn+1=(n=1,2,…),x1=,证明xn存在,并求xn.
设f(x)为可微函数,证明:若x=1时,有,则必有f’(1)=0或f(1)=1.
设f(x)定义在R上,对于任意的x1,x2有|f(x1)-f(x2)|≤(x1-x2)2,证明:f(x)是常值函数。
设f(x)在(-∞,+∞)内有定义,且对任意的x,x1,x2∈(-∞,+∞),有f(x1+x2)=f(x1)·f(x2),f(x)=1+xg(x),其中=1,证明:f(x)在(-∞,+∞)内处处可导。
随机试题
男性,1岁,近一年来反复发生呕吐,呕吐物经常含胆汁,有时带隔夜食物。碘水造影提示十二指肠降部扩张。如果术中发现十二指肠降部隔膜狭窄,正确的处理是
处方中含有纤维丰富的药物处方中含有乳汁、胆汁药物
中国的A航运公司与美国的B船公司签订光船租赁合同,A公司租用B公司的一艘远洋货船。该船是挂巴拿马国旗并在巴拿马作了登记,当船租赁合同订立之前,B公司已将该船抵押给C造船公司。A公司租人船舶后,改为悬挂中国国旗,在该船舶租赁合同期间,C公司向B公司主张债权未
根据《中华人民共和国合同法》的规定:执行政府定价或政府指导价的、在合同约定的支付期限内政府价格调整时,按照()计价。
关于政府引导基金,下列说法错误的是()。
企业自行建造固定资产过程中专用设备的折旧费,应计入()科目。
从所给的四个选项中,选择最恰当的一项填入问号处,使之呈现一定的规律性:
一般人总会这样认为,既然人工智能这门新兴学科以模拟人的思维为目标,那么,就应该深入地研究人思维的生理机制和心理机制。其实,这种看法很可能误导这门新兴学科。如果说,飞机发明的最早灵感可能是来自于鸟的飞行原理的话,那么,现代飞机从发明、设计、制造到不断改进,没
有如下程序:PrivateSubForm_Click()DimsAsInteger,pAsIntegerp=1Fori=1To4Forj=1Tois=s+jNextjp=p*sNextiPrintpEndSu
AsdetailsofAmericansnooping(窥探)spread,salesof1984,GeorgeOrwell’sfableofanever-watchingstate,rocketed.Sodidtr
最新回复
(
0
)