首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3 证明:任一三维非零向量β(β≠0)都是A2的特征向量,并求对应的特征值。
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3 证明:任一三维非零向量β(β≠0)都是A2的特征向量,并求对应的特征值。
admin
2014-08-18
41
问题
A是三阶矩阵,有特征值λ
1
=λ
2
=2,对应两个线性无关的特征向量为ξ
1
,ξ
3
,λ
2
=…2对应的特征向量是ξ
3
证明:任一三维非零向量β(β≠0)都是A
2
的特征向量,并求对应的特征值。
选项
答案
因A特征值λ
1
=λ=2.λ
2
=一2,故A
2
有特征值μ
1
=μ
2
=μ
3
=4.对应的特征向量仍是ξ
1
ξ
2
,ξ
3
且ξ
1
,ξ
2
,ξ
3
线性无关.故存在可逆阵P=[ξ
1
,ξ
2
,ξ
3
],使得P
-1
A
2
P=4E,A
2
=P(4E)P
-1
=4E,从而有对任意的β≠0,有A
2
β=4Eβ=4β,故知任意非零向量β都是A
2
的对应于λ=4的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/mg54777K
0
考研数学一
相关试题推荐
设函数f(x)满足f(1)=1,且有f’(x)=,证明:极限存在。
设F(x,y)=,F(1,y)=-y+5,x0>0,x1=F(x0,2x0),…,xn+1=F(xn,2xn),n=1,2,…,证明:xn存在,并求该极限。
设数列{xn}满足0<x1<1,ln(1+xn)=-1(n=1,2,…),证明:xn存在,并求该极限。
设f(x)在[0,+∞)上连续,满足0≤f(x)≤x,x∈[0,+∞),设a1≥0,an+1=f(an)(n=1,2,…),证明:设an=t,则有f(t)=t.
设f(x)在[0,+∞)上连续,满足0≤f(x)≤x,x∈[0,+∞),设a1≥0,an+1=f(an)(n=1,2,…),证明:{an}为收敛数列。
设当a≤x≤b时,a≤f(x)≤b,并设存在常数k,0≤k<1,对于[a,b]上的任意两点x1与x2,都有|f(x1)-f(x2)|≤k|x1-x2|,证明:存在唯一的ξ∈[a,b]使f(ξ)=ξ.
设f(x)为可微函数,证明:若x=1时,有,则必有f’(1)=0或f(1)=1.
设f(x)在(-∞,+∞)内有定义,且对任意的x,x1,x2∈(-∞,+∞),有f(x1+x2)=f(x1)·f(x2),f(x)=1+xg(x),其中=1,证明:f(x)在(-∞,+∞)内处处可导。
随机试题
基金管理公司、基金托管和销售机构的从业人员特定禁止行为包括()。Ⅰ.在不同基金资产之间、基金资产和其他受托资产之间进行利益输送Ⅱ.利用基金的相关信息为本人或者他人牟取私利Ⅲ.挪用基金投资者的交易资金和基金份额Ⅳ.隐匿、伪造、篡改
防腐层选用的基本依据是什么?
献血法规定,献血者每次献血量为
A.抑木扶土法B.培土制水法C.佐金平木法D.泻南补北法E.培土生金法适用于肝火犯胃,胃脘胀痛,烦躁易怒之证的是()。
图示结构在P作用下,杆a的轴力为()(拉力为正)。
下列关于建设项目偿债能力指标的表述,错误的是()。
根据(会计法)的规定,我国是以( )为一个会计年度。
准公共物品是指完全的非竞争性和非排他性公共物品。()
甲是乙的债权人,乙为担保履行债务,由其好友丁将房屋抵押给甲,办理了抵押登记。此后,因为业务往来,甲将其对乙的债权转让给丙,未征得乙同意但是通知了乙。对此,下列说法错误的有()。
TodaytheAmericans’loveofcomfortisseeninthewaythey_____theirhomes,thewaytheydesigntheircars,andthewaytheyl
最新回复
(
0
)