首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3 证明:任一三维非零向量β(β≠0)都是A2的特征向量,并求对应的特征值。
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3 证明:任一三维非零向量β(β≠0)都是A2的特征向量,并求对应的特征值。
admin
2014-08-18
64
问题
A是三阶矩阵,有特征值λ
1
=λ
2
=2,对应两个线性无关的特征向量为ξ
1
,ξ
3
,λ
2
=…2对应的特征向量是ξ
3
证明:任一三维非零向量β(β≠0)都是A
2
的特征向量,并求对应的特征值。
选项
答案
因A特征值λ
1
=λ=2.λ
2
=一2,故A
2
有特征值μ
1
=μ
2
=μ
3
=4.对应的特征向量仍是ξ
1
ξ
2
,ξ
3
且ξ
1
,ξ
2
,ξ
3
线性无关.故存在可逆阵P=[ξ
1
,ξ
2
,ξ
3
],使得P
-1
A
2
P=4E,A
2
=P(4E)P
-1
=4E,从而有对任意的β≠0,有A
2
β=4Eβ=4β,故知任意非零向量β都是A
2
的对应于λ=4的特征向量.
解析
转载请注明原文地址:https://kaotiyun.com/show/mg54777K
0
考研数学一
相关试题推荐
设F(x,y)=,F(1,y)=-y+5,x0>0,x1=F(x0,2x0),…,xn+1=F(xn,2xn),n=1,2,…,证明:xn存在,并求该极限。
设数列{xn}满足0<x1<1,ln(1+xn)=-1(n=1,2,…),证明:xn存在,并求该极限。
设f(x)在[0,+∞)上连续,满足0≤f(x)≤x,x∈[0,+∞),设a1≥0,an+1=f(an)(n=1,2,…),证明:设an=t,则有f(t)=t.
设f(x)在[0,+∞)上连续,满足0≤f(x)≤x,x∈[0,+∞),设a1≥0,an+1=f(an)(n=1,2,…),证明:{an}为收敛数列。
设xn+1=(n=1,2,…),x1=,证明xn存在,并求xn.
设f(x)为可微函数,证明:若x=1时,有,则必有f’(1)=0或f(1)=1.
随机试题
使用VC++6.0打开考生文件夹下的源程序文件3.cpp。请完成以下部分,实现在屏幕上输出为C3C2这个程序需要修改的部分,请按照以下部分实现。(1)类C0不能被实例化,请定义一个纯虚函数print,在注释1后添加适当的语句
下列关于房屋转租的说法正确的是()
婚前医学检查包括对下列疾病的检查
母乳的特点是( )。
提请批捕、执行逮捕是公安机关的权力,而批准逮捕则属检察机关的权力。()
“公田”、“私田”
论述20世纪30年代英法绥靖政策产生的原因及主要表现
犯罪同类客体最显著的作用是()
问题处理方案的正确而完整的描述称为______。
OfHumanBondagewaswrittenby__________.
最新回复
(
0
)