首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2001年试题,十)已知3阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x. 记P=(x,Ax,A2x),求3阶矩阵B,使A=PBP-1;
(2001年试题,十)已知3阶矩阵A与三维向量x,使得向量组x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x. 记P=(x,Ax,A2x),求3阶矩阵B,使A=PBP-1;
admin
2014-08-18
41
问题
(2001年试题,十)已知3阶矩阵A与三维向量x,使得向量组x,Ax,A
2
x线性无关,且满足A
3
x=3Ax一2A
2
x.
记P=(x,Ax,A
2
x),求3阶矩阵B,使A=PBP
-1
;
选项
答案
解法1依题设,A(x,Ax,A
2
x)=(Ax,A
2
x,A
3
x)=(Ax,A
2
x,3Ax一2A
2
x)[*]即得[*]因P=(x,Ax,A
2
x)可逆,故得[*] 解法2由A
3
x=3Ax一2A
2
x知,A(A
2
x+3Ax)=A
2
x+3Ax,故A有特征值1,同理得其有三个不同的特征值1,一3,0,也就有三个线性无关的特征向量,不难看出依次为:A
2
x+3Ax,A
2
x—Ax,A
2
x+2Ax一3x令Q=(A
2
x+3Ax,A
2
x—Ax,A
2
x+2Ax一3x),则有[*]故A=QAQ
-1
=PCAC
-1
P
-1
.从而B=CAC
-1
[*] 解法3设[*]则由AP=PB得:[*]即[*]从而[*]因为x,Ax,A
2
x线性无关,故可得a
1
=a
2
=a
3
=b
2
=c
1
=0,b
1
=c
2
=1,b
3
=3,c
3
=一2,即得[*] 解法4因为P=(x,Ax,A
2
x)可逆,所以P
-1
P=E,即P
-1
(x,Ax,A
2
x)=E.进而有[*]故B=P
-1
AP=P
-1
(Ax.A
2
x,A
2
x)=P
-1
(Ax,A
2
x,3Ax一2A
2
x)=(P
-1
Ax,P
-1
A
2
x,3P
-1
Ax一2P
-1
A
2
x)[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/OM54777K
0
考研数学一
相关试题推荐
设正项级数an收敛,且bn==___________.
设f(x)的导数在x=0处连续,且=3,则x=0()。
已知f(0)=0,f’(0)=2,则=________.
若f(x)在点x0处至少二阶可导,且,则函数f(x)在x=x0处()。
设n为正整数,In=证明In—In—1=(一1)n—1·
港口甲到港口乙的距离等于1000km,货船从港口甲出发,沿江以匀速度v逆流而上驶往港口乙,假定货船在单位时间内的燃料消耗A与(单位:km/h)成正比,比例常数为1,又知道江水流速为20km/h,问货船速率v等于何值时,航程中消耗燃料的量最小?
已知3维向量组α1,α2,α3线性无关,则向量组α1-α2,α2-kα3,α3-α1线性无关的充要条件是________.
已知α1,α2,α3,α4为3维非零列向量,则下列结论:①如果α4不能由α1,α2,α3线性表出,则α1,α2,α3线性相关;②如果α1,α2,α3线性相关,α2,α3,α4线性相关,则α1,α2,α4也线性相关;③如果r(α1,α1+α2,α2+α
设A是3阶矩阵,b=[9,18,-18]T,方程Ax=b有通解k1[-2,1,0]T+k2[2,0,1]T+[1,2,-2]T,其中k1,k2是任意常数,求A及A100.
用观察的方法判断下列数列是否收敛:
随机试题
人体动态测量主要包括()。
现金结算具有()的特点。
抽奖式有奖销售的最高奖金额不得超过人民币()。
关于基金份额持有人大会,以下描述错误的是()。
根据《证券法》的相关规定,证券的代销和包销期限,最长不超过()。
拘留时间以天为计算单位,期限为1日以上,15日以下,但对数种违反治安管理行为的处罚,按照()的原则,拘留期限可以超过15日。
适用于向国内外宣布重要事项或者法定事项的公文文种是()。
设X1,X2,…,Xn为来自标准正态总体X的简单随机样本,记,则E(T2)=___________.
有下列函数定义:intfun(doublea,doubleB){returna*b;}若下列选项中所用变量都已正确定义并赋值,错误的函数调用是()。
Hehaslittle______ofthosewhoalwaysspeakalot,butneversticktothepoint.
最新回复
(
0
)