首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设三元非齐次线性方程组Ax=b的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T,求该非齐次方程组的通解.
设三元非齐次线性方程组Ax=b的系数矩阵A的秩为1,已知η1,η2,η3是它的三个解向量,且η1+η2=[1,2,3]T,η2+η3=[2,-1,1]T,η3+η1=[0,2,0]T,求该非齐次方程组的通解.
admin
2021-07-27
81
问题
设三元非齐次线性方程组Ax=b的系数矩阵A的秩为1,已知η
1
,η
2
,η
3
是它的三个解向量,且η
1
+η
2
=[1,2,3]
T
,η
2
+η
3
=[2,-1,1]
T
,η
3
+η
1
=[0,2,0]
T
,求该非齐次方程组的通解.
选项
答案
由r(A)=1,知Ax=b的通解应为kξ
1
+k
2
ξ
2
+η,其中对应齐次方程组Ax=0的解为ξ
1
=(η
1
+η
2
)-(η
2
+η
3
)=η
1
-η
3
=[-1,3,2]
T
,ξ
2
=(η
2
+η
3
)-(η
3
+η
1
)=η
2
-η
1
=[2,-3,1]
T
.因ξ
1
,ξ
2
线性无关,故是Ax=0的基础解系.取Ax=b的一个特解为η=1/2(η
3
+η
1
)=[0,1,0]
T
.故Ax=b的通解为k
1
[-1,3,2]
T
+k
2
[2,-3,1]
T
+[0,1,0]
T
,k
1
,k
2
为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/QLy4777K
0
考研数学二
相关试题推荐
A是n阶矩阵,则()
设函数f(x)具有二阶连续的导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极大值的一个充分条件是()
设三阶矩阵A的特征值为λ1=-1,λ2=0,λ3=1,则下列结论不正确的是().
n阶矩阵A和B具有相同的特征值是A和B相似的()
微分方程y’’一λ2y=eλx+e-λx(λ>0)的特解形式为()
设矩阵A=,矩阵B满足(A*)-1BA*=BA*+8A,其中A*为A的伴随矩阵,求矩阵B.
设A,B均为正定矩阵,则()
设有任意两个n维向量组α1,α2,…,αm和β1,β2,…,βm,若存在两组不全为零的数λ1,λ2,…,λm和k1,k2,…,km,使(λ1+k1)α1+…+(λm+km)αm+(λ1-k1)β1+…+(λm-km)βm=0,则
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,且r(A)=3,α1=[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组AX=b的通解是()
问λ为何值时,线性方程组有解,并求出解的一般形式.
随机试题
企业经营战略实施的方式有哪些?
在客观规律面前,人的主观能动性表现在()
为了减少烟熏食品苯并芘的污染应该作到
湿疮治疗原则是()
典型的矽结节横断面似
与公孙穴相通的奇经是
关于韦伯的工业区位论,下列说法正确的有()。
阅读下面资料,作答以下问题:事业单位受聘人员与聘用单位订立聘用合同,都必须约定试用期。这种说法是否正确?()
若DX=0.004,利用切比雪夫不等式估计概率P{|X-EX|<0.2}.
Playisthe【C1】______businessofchildhood.Fromearliestinfancy,everychildneedsopportunityandtherightmaterialforplay
最新回复
(
0
)