首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)在区域D={(χ,y)|0<χ<1,χ2<y<}上服从均匀分布,令 (Ⅰ)写出(X,y)的概率密度; (Ⅱ)问U与X是否相互独立?并说明理由; (Ⅲ)求Z=U+X的分布函数F(z).
设二维随机变量(X,Y)在区域D={(χ,y)|0<χ<1,χ2<y<}上服从均匀分布,令 (Ⅰ)写出(X,y)的概率密度; (Ⅱ)问U与X是否相互独立?并说明理由; (Ⅲ)求Z=U+X的分布函数F(z).
admin
2018-06-30
43
问题
设二维随机变量(X,Y)在区域D={(χ,y)|0<χ<1,χ
2
<y<
}上服从均匀分布,令
(Ⅰ)写出(X,y)的概率密度;
(Ⅱ)问U与X是否相互独立?并说明理由;
(Ⅲ)求Z=U+X的分布函数F(z).
选项
答案
(Ⅰ)区域D如图(a),面积为S
D
=[*],由题意,(X,Y)的概率密度为 [*] (Ⅱ)由题意,P(U≤0)=P(U=0)=P(X>Y) =[*] D
1
见图(b) [*] G见图C. 而P(U≤0,X≤[*])=P(X>Y,X≤[*]) =[*] G
1
见图(d) 可见P(U≤0,X≤[*])≠P(U≤0)[*], 故U与X不独立. (Ⅲ)F(z)=P(Z≤z)=P(U+X≤z)=P(U+X≤z,U=0)+P(U+X≤z,U=1)=P(X≤z,X>Y)+P(X≤z-1,X≤y) 可见,z<0时,F(z)=0; z≥2时,P(X≤z,X>Y)=P(X>Y),P(X≤z-1,X≤Y)=P(X≤Y) 所以F(z)=P(X>Y)+P(X≤Y)=1; 0≤z<1时,由-1≤z-1<0,知P(X≤z-1,X≤Y)=0, 而P(X≤z,X>y)=[*], G
2
见图(e). 故F(z)=[*]z
2
-z
3
; 1≤z<2时,P(X≤z,X>Y)=P(X>Y)=[*], 这时0≤z-1<1,有P(X≤z-1,X≤Y) =[*] G
3
见图(f). 所以F(z)=[*] [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/QQW4777K
0
考研数学三
相关试题推荐
设f(x)连续,且F(x)=∫0x(x一2t)f(t)dt.证明:若f(x)单调不增,则F(x)单调不减.
计算,其中D是由曲线y=一a+和直线y=一x所围成的区域.
设某一设备由三大部件构成,设备运转时,备部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
设随机变量X服从[a,a+2]上的均匀分布,对X进行3次独立观测,求最多有一次观测值小于a+1的概率.
已知总体X与Y相互独立且都服从标准正态分布,X1,…,X8和Y1,…,Y9是分别来自总体X与Y的两个简单随机样本,其均值分别为,求证:服从参数为15的t分布.
设X1,X2,…,X9是来自总体X~N(μ,4)的简单随机样本,而是样本均值,则满足=0.95的常数μ=_______.(Ф(1.96)=0.975)
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设有微分方程y’一2y=φ(x),其中φ(x)=在(一∞,+∞)求连续函数y(x),使其在(一∞,1)及(1,+oo)内都满足所给的方程,且满足条件y(0)=0.
设A为实矩阵,证明ATA的特征值都是非负实数.
(2000年)假设某企业在两个相互分割的市场上出售同一种产品,两个市场的需求函数分别是P1=18—2Q1,P2=12一Q2,其中P1和P2分别表示该产品在两个市场的价格(单位:万元/吨),Q1和Q2分别表示该产品在两个市场的销售量(即需求量,单位
随机试题
若main()函数带参数,参数个数最多是()
转移性骨肿瘤
女,38岁,四肢大小关节肿痛12年,X线示双手指关节及腕关节有多处骨质破坏,关节检查仍有多个关节肿痛,脾肋下2cm触及,质中偏硬,查WBC:2×109/L,血小板:60×109/L,ESR:56mm/h,尿常规(一),10年来一直服用非甾体类消炎镇痛药。该
有关滴眼剂叙述不正确的是
A.药品通用名B.化学名C.拉丁名D.商品名E.别名白加黑为
下列有关仲裁管辖的表述哪些是不正确的?()。
以下滚动轴承中,不允许有角偏差的是()。
2,6,13,39,15,45,23,()
下列观点不属于达尔文进化理论的是:
假定有两个关系R与S,其内容分别为:R关系S关系ABCBCD12525172
最新回复
(
0
)