[2009年] (1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b)使得f(b)-f(a)=f’(ξ)(b-a). (2)证明:若函数在x=0处连续,在(0,δ)(δ>0)内可导,且则f+’+(0

admin2019-03-30  58

问题 [2009年]  (1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b)使得f(b)-f(a)=f’(ξ)(b-a).
    (2)证明:若函数在x=0处连续,在(0,δ)(δ>0)内可导,且则f+’+(0)存在,且f+’(0)=A.

选项

答案证 (1)证一从待证的结果形式看,可利用罗尔定理证之.为此构造函数F(x),该函数在[a,b]上满足罗尔定理的条件,其中关键条件是F(a)=F(b).为此可从几何图形构造辅助函数(见图1.2.4.1).因直线AB的方程为 [*] 从几何上看,曲线f(x)与直线y显然有两个交点,其纵坐标值相等.基于此,构造辅助函数 [*] 则F(x)在[a,b]上连续,在(a,b)内可导,且 F(a)=f(a)-[f(a)+0]=0, [*] 从而F(x)在[a,b]上满足罗尔定理的全部条件.由罗尔定理知,存在ξ∈(a,b),使 [*] 即 [*]亦即 f(b)-f(a)=(b-a)f’(ξ). 证二 将待证结论中的ξ换为x,得到[*]两端积分得 [*] 于是令[*]则F(x)在[a,b]上连续,在(a,b)内可导,且 [*] 由罗尔定理知,在(a,b)内至少存在一点ξ,使F’(ξ)=0,即[*]故 f(b)-f(a)=f’(ξ)(b-a). (2)证一 对任意t∈(0,δ),函数f(x)在[0,t]上连续,在(0,t)内可导,由右导数定义及拉格朗日中值定理,得到 [*] 由于[*]且当t→0+时ξ=0+,故[*]所以f+’(o)存在,且f’(0)=A. 证二 由右导数定义及洛必达法则证之. [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/CiP4777K
0

随机试题
最新回复(0)