首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] (1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b)使得f(b)-f(a)=f’(ξ)(b-a). (2)证明:若函数在x=0处连续,在(0,δ)(δ>0)内可导,且则f+’+(0
[2009年] (1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b)使得f(b)-f(a)=f’(ξ)(b-a). (2)证明:若函数在x=0处连续,在(0,δ)(δ>0)内可导,且则f+’+(0
admin
2019-03-30
121
问题
[2009年] (1)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,b)内可导,则存在ξ∈(a,b)使得f(b)-f(a)=f’(ξ)(b-a).
(2)证明:若函数在x=0处连续,在(0,δ)(δ>0)内可导,且
则f
+
’+(0)存在,且f
+
’(0)=A.
选项
答案
证 (1)证一从待证的结果形式看,可利用罗尔定理证之.为此构造函数F(x),该函数在[a,b]上满足罗尔定理的条件,其中关键条件是F(a)=F(b).为此可从几何图形构造辅助函数(见图1.2.4.1).因直线AB的方程为 [*] 从几何上看,曲线f(x)与直线y显然有两个交点,其纵坐标值相等.基于此,构造辅助函数 [*] 则F(x)在[a,b]上连续,在(a,b)内可导,且 F(a)=f(a)-[f(a)+0]=0, [*] 从而F(x)在[a,b]上满足罗尔定理的全部条件.由罗尔定理知,存在ξ∈(a,b),使 [*] 即 [*]亦即 f(b)-f(a)=(b-a)f’(ξ). 证二 将待证结论中的ξ换为x,得到[*]两端积分得 [*] 于是令[*]则F(x)在[a,b]上连续,在(a,b)内可导,且 [*] 由罗尔定理知,在(a,b)内至少存在一点ξ,使F’(ξ)=0,即[*]故 f(b)-f(a)=f’(ξ)(b-a). (2)证一 对任意t∈(0,δ),函数f(x)在[0,t]上连续,在(0,t)内可导,由右导数定义及拉格朗日中值定理,得到 [*] 由于[*]且当t→0
+
时ξ=0
+
,故[*]所以f
+
’(o)存在,且f’(0)=A. 证二 由右导数定义及洛必达法则证之. [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/CiP4777K
0
考研数学三
相关试题推荐
若曲线y=x3+ax2+bx+1有拐点(—1,0),则b=________。
将函数f(x)=展开成x一1的幂级数,并指出其收敛区间。
讨论函数f(x)=的连续性.
求曲线y=的上凸区间.
计算I=y2dσ,其中D由X=-2,y=2,X轴及曲线x=围成.
求曲线y=cosx与x轴围成的区域绕x轴、y轴形成的几何体体积.
对于任意两随机变量X和Y,与命题“X和Y不相关”不等价的是()
设A=的一个特征值为λ1=2,其对应的特征向量为ξ1=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
10件产品有3件次品,7件正品,每次从中任取1件,取后不放回,求下列事件的概率:(1)第三次取得次品;(2)第三次才取得次品;(3)已知前两次没有取到次品,第三次取得次品;(4)不超过三次取到次品.
(1)求常数m,n的值,使得(2)设当x→0时,x一(a+bcosx)sinx为x的5阶无穷小,求a,b.(3)设当x→0时,求a,b.
随机试题
在市场调查的基础上,借助一定的经验和预测技术,对市场未来的发展趋势做出判断的过程是()
物质、能源和____________是人类社会赖以生存、发展的三大重要资源。
牙齿形态异常不包括
患者,女,65岁。既往患有慢性肾衰竭。近日因劳累出现倦怠乏力,懒言,纳呆腹胀,便溏,腰膝酸软,舌淡有齿痕,苔白腻,脉沉细。其中医治法是
急性型再生障碍性贫血早期最突出的表现是:
对于起重机械安装拆卸工程、深基坑工程、附着式升降脚手架等专业工程实行分包的专项施工方案可由专业承包单位编制。()
证券公司应当在其经营场所显著位置或者其网站,公开下列哪些信息?()
对下列哪一情形,行政复议机关可以进行调解?()
在VisualFoxPro中,有如下程序:*程序名:TEST.PRGSETTALKOFFPRIVATEX,YX="数据库"Y="管理系统"DOsub1?X+YRETURN*子程
Whenthetalkwouldhappen?
最新回复
(
0
)