首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2013年] 设直线L过A(1,0,0),B(0,1,1)两点,将L绕x轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω. 求曲面∑的方程;
[2013年] 设直线L过A(1,0,0),B(0,1,1)两点,将L绕x轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω. 求曲面∑的方程;
admin
2019-04-08
99
问题
[2013年] 设直线L过A(1,0,0),B(0,1,1)两点,将L绕x轴旋转一周得到曲面∑,∑与平面z=0,z=2所围成的立体为Ω.
求曲面∑的方程;
选项
答案
直线L的方向向量为[*],则过A的直线L的方程为 [*] 设曲面∑上的任意点为M(x,y,z),其所在的圆交于直线L上的点为M
0
(x
0
,y
0
,z
0
),其圆心为(0,0,z).由|MT|= |M
0
T|得到 x
2
+y
2
=x
0
2
+y
0
2
. ① 又M
0
在直线L上,故 [*] 将其代入方程①得到曲面∑的方程为 x
2
+y
2
=(1一z)
2
+z
2
=2z
2
一2z+1. ②
解析
转载请注明原文地址:https://kaotiyun.com/show/QR04777K
0
考研数学一
相关试题推荐
如图1.3-1所示,设曲线方程为,梯形OABC的面积为D,曲边梯形OABC的面积为D1,点A的坐标为(a,0),a>0,证明:
设函数Q(x,y)在平面xOy上具有一阶连续偏导数,曲线积分2xydx+Q(x,y)dy与路径无关,并且对任意t恒有,求Q(x,y)。
A为三阶实对称矩阵,A的秩为2,且(1)求A的特征值与特征向量.(2)求矩阵A.
设f(x),g(x)在点x。可导,且f(x。)=g(x。),fˊ(x。)=gˊ(x。),若h(x)在x。的某一邻域内满足f(x)≤h(x)≤g(x),证明:h(x)在点x。可导,并且hˊ(x。)=fx。(x。)=gx。(x。).
现有三个箱子,第一个箱子有4个红球,3个白球;第二个箱子有3个红球,3个白球;第三个箱子有3个红球,5个白球;先取一只箱子,再从中取一只球.(1)求取到白球的概率;(2)若取到红球,求红球是从第二个箱子中取出的概率.
求过直线且与点(1,2,1)的距离为l的平面方程.
设曲线L的极坐标方程为r=r(θ),M(r,θ)为L上任一点,M0(2,0)为L上一定点,若极径OM0,OM与曲线L所围成的曲边扇形面积值等于L上M0,M两点间弧长值的一半,求曲线L的方程.
设A是n×n矩阵,对任何n维列向量X都有AX=0,证明:A=O.
用线性代数中的克拉默法则,对三元一次方程组求解.
(2011年)(I)证明:对任意的正整数n,都有成立.(Ⅱ)设证明数列{an}收敛.
随机试题
缺血性周围性发绀可见:于
A.鞘膜积液B.精索静脉曲张C.膜积血D.附睾炎E.睾丸肿瘤哪项疾病可能继发于肾肿瘤
按照《建设工程质量管理条例》规定,施工人员对涉及结构安全的试块、试件以及有关材料进行现场取样时应当:
居民委员会按( )设立。
依据《公务员法》的规定,下列做法正确的是()。
阅读以下文字,回答下列问题。玫瑰在植物分类上属于蔷薇科蔷薇属,已有上千年的栽培历史,在此期间,人们通过广泛杂交,培育出数量庞大的品种群。如今,世界各地(主要是北半球地区)生长着200多个种类的玫瑰。植物学家和同艺家一般将玫瑰分成两大类,即野生玫瑰
邓小平关于我国当前处于“社会主义初级阶段”的科学论断揭示了我国当前的
Thoughthecityisnoisy,mostpeopleliketoliveinit.Therearereallymanythingstoseeandenjoyinacity.Thestree
Surprisinglyenough,modemhistorianshaverarelyinterestedthemselvesinthehistoryoftheAmericanSouthintheperiodbefor
What’sthemainfeatureofthenewmethodofpayingformeals?
最新回复
(
0
)