首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设{un},{cn}为正项数列,证明: (1)若对一切正整数n满足cnun-cn+1un+1≤0,且1/cn发散,则un也发散; (2)若对一切正整数n满足cn-cn+1≥a(a>0),且1/cn收敛,则cn也收敛.
设{un},{cn}为正项数列,证明: (1)若对一切正整数n满足cnun-cn+1un+1≤0,且1/cn发散,则un也发散; (2)若对一切正整数n满足cn-cn+1≥a(a>0),且1/cn收敛,则cn也收敛.
admin
2018-05-21
30
问题
设{u
n
},{c
n
}为正项数列,证明:
(1)若对一切正整数n满足c
n
u
n
-c
n+1
u
n+1
≤0,且
1/c
n
发散,则
u
n
也发散;
(2)若对一切正整数n满足c
n
-c
n+1
≥a(a>0),且
1/c
n
收敛,则
c
n
也收敛.
选项
答案
显然[*]c
n
为正项级数. (1)因为对所有n满足c
n
u
n
-c
n+1
u
n+1
≤0,于是 c
n
u
n
≤c
n+1
u
n+1
[*]c
n
u
n
≥…≥c
1
u
1
>0, 从而u
n
≥c
1
u
1
.1/c
n
.因为[*]1/c
n
发散,所以[*]u
n
也发散. (2)因为对所有n满足c
n
[*]-c
n+1
≥a,则c
n
u
n
-c
n+1
u
n+1
≥au
n+1
,即 c
n
u
n
≥(c
n+1
+a)u
n+1
,所以[*]≥u
n+1
/u
n
, [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/bOr4777K
0
考研数学一
相关试题推荐
设y=ex(asinx+bcosx)(a,b为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为_________.
函数f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的最小值是_________.
设函数f(u)可导,y=f(x2)当自变量x在x=一1处取得增量△x=一0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)等于()
设A是n阶矩阵,|A|=2,若矩阵A+E不可逆,则A*必有特征值________.
[*](2)根据幂级数展开式的唯一性,得u(x)在x0=1处高阶导数的[*]
一容器由y=x2绕y轴旋转而成.其容积为72πm3,其中盛满水,水的比重为μ.现将水从容器中抽出64πm3,问需作功多少?
设φ(y)为连续函数.如果在围绕原点的任意一条逐段光滑的正向简单封闭曲线l上,曲线积分其值与具体l无关,为同一常数k.如果φ(y)具有连续的导数,求φ(y)的表达式.
5kg肥皂溶于300L水中后,以每分钟10L的速度向内注入清水,同时向外抽出混合均匀之肥皂水,问何时余下的肥皂水中只有1kg肥皂.
设f(x)在R上连续,且f(x)≠0,φ(x)在R上有定义,且有间断点,则下列陈述中正确的个数是()①φ[f(x)]必有间断点。②[φ(x)]2必有间断点。③f[φ(X)]没有间断点。
随机试题
钻井液材料的质量指标分为()指标和钻井液性能指标两类。
能识别DNA特异序列并在识别位点或其周围切割双链DNA的一类酶是
患者,男性,35岁。一年前开始出现低热、乏力,近半年来逐渐出现四肢关节与肌肉酸痛,举手及登楼困难,同时在眼睑、鼻梁、远端指间关节及甲周围皮肤出现暗红色斑。该患者最可能的诊断是
肺痿用药忌用肺胀平时宜常服
关于预激综合征并发心动过速,下列哪项不正确
女,36岁。发现左乳肿物3个月,近期增大明显。检查左乳外上象限可扪及3cm×3cm肿块,质硬,活动差,左腋下未扪及肿大淋巴结。行乳腺细针穿刺活检为坏死组织。进一步处理为
杜仲炮制的作用是
儿童生长发育迟缓,食欲减退或有异食癖,最可能缺乏的营养素是()。
课程设计
Readthearticlebelowabouttheimportanceofanameandthequestionsontheoppositepage.Foreachquestion(13-18),mark
最新回复
(
0
)