首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,b=[9,18,-18]T,方程Ax=b有通解k1[-2,1,0]T+k2[2,0,1]T+[1,2,-2]T,其中k1,k2是任意常数,求A及A100.
设A是3阶矩阵,b=[9,18,-18]T,方程Ax=b有通解k1[-2,1,0]T+k2[2,0,1]T+[1,2,-2]T,其中k1,k2是任意常数,求A及A100.
admin
2019-07-19
56
问题
设A是3阶矩阵,b=[9,18,-18]
T
,方程Ax=b有通解k
1
[-2,1,0]
T
+k
2
[2,0,1]
T
+[1,2,-2]
T
,其中k
1
,k
2
是任意常数,求A及A
100
.
选项
答案
方法一 由题设条件知,对应齐次方程的基础解系是ξ
1
=[-2,1,0]
T
,ξ
2
=[2,0,1]
T
, 即ξ
1
,ξ
2
是A的对应于λ=0的两个线性无关的特征向量,又η=[1,2,-2]
T
是Ax=b的特解,即有 [*] 知ξ
3
=[1,2,-2]
T
=η是A的对应于λ=9的特征向量,取可逆阵P=[ξ
1
,ξ
2
,ξ
3
],则得 P
-1
AP=Λ,A=PΛP
-1
, [*] 或 A
100
=(PΛP
-1
)
100
=PΛ
100
P
-1
[*] 方法二 由方程的通解直接求出系数矩阵A. 因对应齐次方程Ax=0有通解为k
1
ξ
1
+k
2
ξ
2
=k
1
[-2,1,0]
T
+k
2
[2,0,1]
T
,故r(A)=1. 可设方程为 ax
1
+bx
2
+xx
3
=0, 将ξ
1
,ξ
2
代入,则有 [*] 得c=-2a,b=2a,故方程为 a(x
1
+2x
2
-2x
3
)=0. 对应的非齐次方程为 [*] 将特解η=[1,2,-2]
T
代入得k
1
=1,k
2
=2,k
3
=-2. 故得对应矩阵 [*] 再求A
100
.(同方法一) 或因Aξ
1
=0,故A
100
ξ
1
=0;Aξ
2
=0,故A
100
ξ
2
=0.Aη=9ζ,故A
100
η=9
100
η. 故 A
100
[ξ
1
,ξ
2
,η]=[0,0,9
100
η]. A
100
=[0,0,9
100
η][ξ
1
,ξ
2
,η]
-1
= [*] =9
99
A.
解析
转载请注明原文地址:https://kaotiyun.com/show/QVc4777K
0
考研数学一
相关试题推荐
判断下列曲线积分在指定区域上是否与路径无关:(Ⅰ),区域D:x2+y2>0.
设曲线L:x2+y2+x+y=0,取逆时针方向,证明:I=∫L—ysinx2dx+xcosy2dy<.
设S与S0分别为球面(x一a)2+(y一b)2+(z—c)2=R2与x2+y2+z2=R2,又f(x,y,z)在S上连续,求证:f(x+a,y+b,z+c)dS.
计算曲面积分x2cosγdS,其中曲面∑是球面x2+y2+z2=a2的下半部分,γ是∑向上的法向量与z轴正向的夹角.
证明(α,β,γ)2≤α2β2γ2,并且等号成立的充要条件是α,β,γ两两垂直或者α,β,γ中有零向量.
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πf(x)cosxdx=0.证明:在(0,π)内f(x)至少有两个零点.
设f(x)在[a,b]有二阶连续导数,M=|f"(x)|,证明:
设A为m×n矩阵,且m<n,若A的行向量线性无关,则().
设随机变量X与Y相互独立且都服从标准正态分布N(0,1),则()
设3阶实对称矩阵A的特征值为1,2,3,η1=(一1,一1,1)T和η2=(1,一2,一1)T分别是属于1和2的特征向量,求属于3的特征向量,并且求A.
随机试题
现代领导观念的基本特征。
诊断肺心病早期的主要依据是下列哪项
下列表述中,不正确的是()。
目前常用的互联网接入方式有()。
市场营销组合中,可以控制的营销因素有()。
入住饭店后,地陪应向全团旅游者重申当天或第二天的日程安排,包括()。
一个社会的文化及其传统,在很大程度上决定着这个社会的精神面貌,没有和谐的文化,就没有和谐的社会。在当今中国,建设和谐文化,就是建设社会主义先进文化。这个文化以社会主义意识形态为核心,继承发扬中华民族“和”、“合”文化传统,吸收借鉴世界优秀的文明成果,立足当
观:看
窗体上有一个名为List1的列表框和一个名为Command1的命令按钮,并有下面的事件过程:PrivateSubCommand1_Click() n%=List1.ListIndex Ifn>0Then ch$=List1.Lis
Untilthen,hisfamily______fromhimforsixmonths.
最新回复
(
0
)