首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X的概率密度为 其中θ是未知参数(0<θ<1).X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值χ1,χ2,…,χn中小于1的个数.求θ的最大似然估计.
设总体X的概率密度为 其中θ是未知参数(0<θ<1).X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值χ1,χ2,…,χn中小于1的个数.求θ的最大似然估计.
admin
2019-03-07
52
问题
设总体X的概率密度为
其中θ是未知参数(0<θ<1).X
1
,X
2
,…,X
n
为来自总体X的简单随机样本,记N为样本值χ
1
,χ
2
,…,χ
n
中小于1的个数.求θ的最大似然估计.
选项
答案
似然函数 [*] 而由题意,χ
1
,χ
2
,…,χ
n
中有N个的值在区间(0,1)内,故知 L=θ
N
(1-θ)
n-N
∴lnL=Nlnθ+(n-N)ln(1-θ) [*] 令[*]=0,得θ=[*]. 故知θ的最大似然估计为[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/QX04777K
0
考研数学一
相关试题推荐
设n阶矩阵A和B满足A+2B=AB。(Ⅰ)证明:A-2E为可逆矩阵,其中E为n阶单位矩阵;(Ⅱ)证明:AB=BA;(Ⅲ)已知B=,求矩阵A。
试用配方法化二次型f(x1,x2,x3)=2x12+3x22+x32+4x1x2-4x1x3-8x2x3为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及止、负惯性指数。
已知线性方程组有解(1,-1,1,-1)T。(Ⅰ)用导出组的基础解系表示通解;(Ⅱ)写出x=x时的全部解。
已知齐次方程组为其中ai≠0。讨论当a1,a2,…,an和6满足何种关系时:(Ⅰ)方程组仅有零解;(Ⅱ)方程组有非零解,在此情形条件下写出一个基础解系。
(2014年)设∑为曲面z=x2+y2(z≤1)的上侧,计算曲面积分
(2002年)设函数f(x)在x=0的某邻域内具有一阶连续导数,且f(0)≠0,f′(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a,b的值。
(2016年)已知函数f(x)可导,且f(0)=1,设数列{xn}满足xn+1=f(xn)(n=1,2,…),证明:(I)级数绝对收敛;(Ⅱ)存在,且
设总体X的概率分布为其中θ∈(0,1)未知,以Ni表示来自总体X的简单随机样本(样本容量为n)中等于i的个数(i=1,2,3),试求常数a1,a2,a3,使T=aiNi为θ的无偏估计量,并求T的方差。
已知一批零件的长度X(单位:cm)服从正态分布N(μ,1),从中随机地抽取16个零件,得到长度的平均值为40(cm),则μ的置信度为0.95的置信区间是________。(注:标准正态分布函数值Ф(1.96)=0.975,Ф(1.645)=0.95。)
求微分方程xy’+(1一x)y=e2x(x>0)的满足=1的特解.
随机试题
慢性房颤最常见的并发症为
A、不致出现过敏现象B、柔软、滑润,无板硬、黏着不适感C、不会刺激皮肤引起皮炎D、能使疮口早日愈合E、富有黏性,能固定患部,使患部减少活动使用油膏的主要优点有
企业进行会计数字比较的方式包括()。
以下关于生活常识,说法不正确的是()。
旅游行业核心价值观中的“游客为本”与“服务至诚”之间是()的关系。
社会工作者小陈负责“关爱社区失独老人”服务项目,为了完成项目的各项工作,他招募了一批护理、法律等方面的志愿者参与到项目中,下列为这些志愿者准备的培训内容,符合要求的是()
国务院全体会议由国务院总理、副总理、各部部长、各委员会主任、审计长、秘书长和()组成。
近年来,伯来鸟的数量急剧减少,这种肉食鸟一般栖息于平原,如农场或牧场。一些鸟类学家认为这是由于一种新型杀虫剂导致伯来鸟赖以为食的昆虫急剧减少的结果。以下哪项中提出来的问题最不能帮助我们重新判断上述推理是否有效?
Thefollowingisamenuofamobile(移动的)phone.Afterreadingit,youarerequiredtofindtheitemsequivalentto(与......等同)th
Thetendencynowadaystowanderinwildernessesisdelightfultosee.Thousandsoftired,nerve-shaking,over-civilizedpeoplea
最新回复
(
0
)