首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X的概率密度为 其中θ是未知参数(0<θ<1).X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值χ1,χ2,…,χn中小于1的个数.求θ的最大似然估计.
设总体X的概率密度为 其中θ是未知参数(0<θ<1).X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值χ1,χ2,…,χn中小于1的个数.求θ的最大似然估计.
admin
2019-03-07
67
问题
设总体X的概率密度为
其中θ是未知参数(0<θ<1).X
1
,X
2
,…,X
n
为来自总体X的简单随机样本,记N为样本值χ
1
,χ
2
,…,χ
n
中小于1的个数.求θ的最大似然估计.
选项
答案
似然函数 [*] 而由题意,χ
1
,χ
2
,…,χ
n
中有N个的值在区间(0,1)内,故知 L=θ
N
(1-θ)
n-N
∴lnL=Nlnθ+(n-N)ln(1-θ) [*] 令[*]=0,得θ=[*]. 故知θ的最大似然估计为[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/QX04777K
0
考研数学一
相关试题推荐
设(2E-C-1B)AT=C-1,其中层是4阶单位矩阵,AT是4阶矩阵A的转置矩阵,且求矩阵A。
设n元实二次型f(x1,…,xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xx-1+an-1xn)2+(xn+anx1)2,其中a1,…,an均为实数。试问:当a1,…,an满足何种条件时,二次型f是正定的。
已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0,试证:这三条直线交于一点的充分必要条件为a+b+c=0。
在某国,每年有比例为p的农村居民移居城镇,有比例为q的城镇居民移居农村。假设该国总人口数不变,且上述人口迁移的规律也不变。把n年后农村人口和城镇人口占总人口的比例依次记为xn和yn(xn+yn=1)。(Ⅰ)求关系式中的矩阵A;(Ⅱ)设目前农村人口与城镇
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值。若α1=(1,1,0)T,α2=(2,1,1)T,α3=(-1,2,-3)T都是A的属于特征值6的特征向量。求A的另一个特征值和对应的特征向量。
(2001年)设有一高度为h(t)(t为时间)的雪堆在融化过程中,其侧面满足方程(设长度单位为厘米,时间单位为小时),已知体积减少的速率与侧面积成正比(比例系数0.9),问高度为130厘米的雪堆全部融化需多少小时?
(2015年)设Ω是由平面x+y+z=1与三个坐标平面所围成的空间区域,则
(2016年)已知函数f(x)可导,且f(0)=1,设数列{xn}满足xn+1=f(xn)(n=1,2,…),证明:(I)级数绝对收敛;(Ⅱ)存在,且
设随机变量X服从参数为1的泊松分布,则P{X=E(X2)}=________。
袋中有1个红球,2个黑球与3个白球。现有放回地从袋中取两次,每次取一个球,以X,Y,Z分别表示两次取球所取得的红球、黑球与白球的个数。(Ⅰ)求P{X=1|Z=0};(Ⅱ)求二维随机变量(X,Y)的概率分布。
随机试题
在考生文件夹下,有一个数据库文件“samp1.accdb”。在数据库文件中已经建立了两个表对象“tStock”和“tQuota”。试按以下操作要求,完成各种操作。设置“tStock”表的“规格”字段的输入掩码属性,输入掩码的格式为:“220V—W”。其
党组必须服从_________。
临终病人最早出现的心理反应期是
甲公司评估战略备选方案时,主要考虑选择的战略是否发挥了企业优势,克服了劣势,是否利用了机会,将威胁减弱到最低程度,是否有助于企业实现目标。甲公司评估战略备选方案使用的标准是()。
下列各项中,不应计入投资收益的是()。
设f(x2)=x4+x2+1,则fˊ(1)=()。
A.there’sjustnotenoughtimetoseethemall.B.theywouldhavetogivemethemoneytoattendthegamesaswell.C.Fromal
Rumorhasitthatmorethan20booksoncreationism/evolutionareinthepublisher’spipelines.Afewhavealreadyappeared.【F1】
ARegularEuropeanbusinesstravellersviewtravellingoncommercialairlinesasinefficientandinconvenient.Mostlyitisnot
Ithinkanafternoonintheopenairwilldousgood,______?
最新回复
(
0
)