首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设总体X的概率密度为 其中θ是未知参数(0<θ<1).X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值χ1,χ2,…,χn中小于1的个数.求θ的最大似然估计.
设总体X的概率密度为 其中θ是未知参数(0<θ<1).X1,X2,…,Xn为来自总体X的简单随机样本,记N为样本值χ1,χ2,…,χn中小于1的个数.求θ的最大似然估计.
admin
2019-03-07
38
问题
设总体X的概率密度为
其中θ是未知参数(0<θ<1).X
1
,X
2
,…,X
n
为来自总体X的简单随机样本,记N为样本值χ
1
,χ
2
,…,χ
n
中小于1的个数.求θ的最大似然估计.
选项
答案
似然函数 [*] 而由题意,χ
1
,χ
2
,…,χ
n
中有N个的值在区间(0,1)内,故知 L=θ
N
(1-θ)
n-N
∴lnL=Nlnθ+(n-N)ln(1-θ) [*] 令[*]=0,得θ=[*]. 故知θ的最大似然估计为[*].
解析
转载请注明原文地址:https://kaotiyun.com/show/QX04777K
0
考研数学一
相关试题推荐
试用配方法化二次型f(x1,x2,x3)=2x12+3x22+x32+4x1x2-4x1x3-8x2x3为标准形和规范形,写出相应的可逆线性变换矩阵,并求二次型的秩及止、负惯性指数。
已知α1=(1,2,1,1,1)T,α2=(1,-1,1,0,1)T,α3=(2,1,2,1,2)T是齐次线性方程组Ax=0的解,且R(A)=3,试写出该齐次线性方程组Ax=0。
设线性方程组(Ⅰ)证明当a1,a2,a3,4两两不相等时,方程组无解;(Ⅱ)设a1=a3=k,a2=a4=-k(k≠0),并且β1=(-1,1,1)T和β2=(1,1,-1)T是两个解。求此方程组的通解。
解齐次方程组
设A=(aij)是三阶正交矩阵,其中a33=-1,b=(0,0,5)T,则线性方程组Ax=b必有的一个解是________。
(2000年)计算曲线积分其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向。
(2006年)设f(x,y)为连续函数,则等于()
(2007年)设幂级数内收敛,其和函数y(x)满足y"一2xy′一4y=0,y(0)=0,y′(0)=1。(I)证明n=1,2,…;(Ⅱ)求y(x)的表达式。
设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本。记(Ⅰ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=1时,求D(T)。
设某班车起点站上客人数X服从参数λ(λ>0)的泊松分布,每位乘客在中途下车的概率为p(0<p<1),且途中下车与否相互独立,以Y表示在中途下车的人数,求:(Ⅰ)在发车时有n个乘客的条件下,中途有m人下车的概率;(Ⅱ)二维随机变量(X,Y)的概率分布。
随机试题
北京市A区甲公司与大连市B区乙公司在大连市C区签订购买鲜活鱼的合同,约定由乙公司负责送货,并且必须在7月2日前将货物送到北京市D区水产品市场。于是乙公司找到大连市E区的丙运输公司,与其签订了一份运输合同。合同约定由丙公司将乙公司在大连市F区的货物于7月1日
下列阐述正确的是()。
水利水电工程施工临时设施主要包括()两部分。
某外贸公司(增值税一般纳税人)2013年10月份发生以下业务:(1)进口A牌手表5000只,海关审定的完税价格为140万元;进口B牌手表1000只.海关审定的完税价格为1000万元.进口关税税率为30%;(2)进口高尔夫球具,海关审定的完税价格为65万
银行信贷专员小王在运用相关指标对B区域风险状况进行分析时,发现该银行的信贷资产相对不良率小于1、不良率变幅为负、贷款实际收益率较高,如果小王仅以以上信息来判断,则该区域风险()。
在编制现金预算的过程中,可作为其编制依据的有()。
教师的地位应包括()
列举几种主要的社会实践活动。
(16)______(18)______
Newtechnologylinkstheworldasneverbefore.Ourplanethasshrunk.It’snowa"globalvillage"wherecountriesareonlyseco
最新回复
(
0
)