首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
微分方程y"+y=x2+1+sinx的特解形式可设为( ).
微分方程y"+y=x2+1+sinx的特解形式可设为( ).
admin
2019-03-22
62
问题
微分方程y"+y=x
2
+1+sinx的特解形式可设为( ).
选项
A、y
*
=ax
2
+bx+c+x(Asinx+Bcosx)
B、y
*
=x(ax
2
+bx+c+Asinx+Bcosx)
C、y
*
=ax
2
+bx+c+Asinx
D、y
*
=ax
2
+bx+c+Acosx
答案
A
解析
对应齐次方程y"+y=0的特征方程为λ
2
+1=0,特征根为λ=±i.对于y"+y=x
2
+1=e
0x
(x
2
+1)而言,因0不是其特征根,故其特解形式可设为y
1
*
=ax
2
+bx+c.
对y"+y=sinx=e
0x
(0·cosx+1·sinx)(α=0,β=1),因α+iβ=0+i·1=i为特征根,故其特解形式可设为y
2
*
=x(Asinx+Bcosx),从而由命题1.6.3.2知,y"+y=x
2
+1+sinx的特解形式为y
*
=ax
2
+bx+c+x(Asinx+Bcosx).仅(A)入选.
(注:命题1.6.3.2(叠加原理) 设y"+P(x)y=f
1
(x)+f
2
(x),而y
1
*
(x)与y
2
*
(x)分别是
y"+P(x)y’+Q(x)y=f
1
(x), y"+P(x)y’+Q(x)y=f
2
(x)
的特解,则y
1
*
+y
2
*
是方程y"+P(x)y’+Q(x)y=f
1
(x)+f
2
(x)的特解.
当二阶线性方程的非齐次项是不同类型函数的线性组合时,常用叠加原理求得特解.)
转载请注明原文地址:https://kaotiyun.com/show/QYP4777K
0
考研数学三
相关试题推荐
[*]
设g(x)=∫0xf(u)du,其中f(x)=则g(x)在区间(0,2)内()
求函数f(x)=的单调区间与极值。
设函数f(x)在x=1的某邻域内连续,且有
设z=z(x,y)由方程z+ez=xy2所确定,则dz=________。
将函数f(x)=展开成x一1的幂级数,并指出其收敛区间。
求幂级数的收敛域.
设有微分方程y’-2y=φ(x),其中φ(x)=,在(-∞,+∞)求连续函数y(x),使其在(-∞,1)及(1,+∞)内都满足所给的方程,且满足条件y(0)=0.
设f(x)为连续函数,且满足∫01f(xt)dt=f(x)+xsinx,则f(x)=______.
(2000年)设函数f(x)在[0,π]上连续,且∫0πf(x)dx=0,∫0πf(x)cosxdx=0,试证:在(0,π)内至少存在两个不同的点ξ1,ξ2,使f(ξ1)=f(ξ2)=0。
随机试题
甲氨蝶呤治疗肿瘤的机制主要是
关于社会医疗保险的说法,错误的是()
A公司为在上海证券交易所上市的上市公司,其公司章程中明确规定:公司可对外提供担保,金额在100万元以上1000万元以下的担保,应当经公司董事会决议批准,甲为A公司的董事长,未持有A公司股票。12月,A公司的股价跌人低谷,甲拟购入A公司10万股股票,因自有
下列关于属于张衡创造的仪器是()
下列哪组属于人体必需的微量元素()。[辽宁省2007年11月四级真题]
中学教师王老师对班里热爱班集体、乐于助人的同学在班会上进行了表扬,并给予荣誉称号的奖励,王老师所运用的德育方法是()。
卡车只在晚上8点以后才上路行驶。酒后开车的司机都不开车灯。面包车晚上8点以后都不上路行驶。晚上8点以后路上行驶的车都开着车灯。有的军车晚上8点以后上路行驶。如果以上命题都是真的,那么以下哪种情况是不可能出现的?
许多上了年纪的老北京都对小时候庙会上看到的各种绝活念念不忘。如今,这些绝活有了更为正式的称呼——民间艺术,然而,随着社会现代化进程加快,中国民俗文化面临前所未有的生存危机。城市环境不断变化,人们的兴趣及爱好快速分流和转移,加上民间艺术人才逐渐流失,这一切都
有下列程序段 AGAIN:MOVES:[DI],AL INC DI LOOP AGAIN下列指令中( )可完成与上述程序段相同的功能。
Sevenyearsago,whenIwasvisitingGermany,Imetwithanofficialwhoexplainedtomethatthecountryhadaperfectsolution
最新回复
(
0
)