首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0xf(t)dt,求证: (Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ) (Ⅲ)若又有f(x)≥0(x∈(-∞,+∞)),凡为自然数,
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫0xf(t)dt,求证: (Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数; (Ⅱ) (Ⅲ)若又有f(x)≥0(x∈(-∞,+∞)),凡为自然数,
admin
2019-02-23
69
问题
设f(x)在(-∞,+∞)连续,以T为周期,令F(x)=∫
0
x
f(t)dt,求证:
(Ⅰ)F(x)一定能表示成:F(x)=kx+φ(x),其中k为某常数,φ(x)是以T为周期的周期函数;
(Ⅱ)
(Ⅲ)若又有f(x)≥0(x∈(-∞,+∞)),凡为自然数,则当nT≤x<(n+1)T时,有
n∫
0
T
f(x)dx≤∫
0
x
f(t)dt<(n+1)∫
0
T
f(x)dx.
选项
答案
(Ⅰ)即确定常数k,使得φ(x)=F(x)-kx以T为周期.由于 φ(x+T)=F(x+T)-k(x+T)=∫
0
x
f(t)dt-kx+∫
x
x+T
f(t)dt-kT =φ(x)+∫
0
T
f(t)dt-kT, 因此,取k=[*]∫
0
T
f(t)dt,φ(x)=F(x)-kx,则φ(x)是以T为周期的周期函数.此时 F(x)=[*]+φ(x). (Ⅱ)不能用洛必达法则.因为[*]不存在,也不为∞.但∫
0
x
f(t)dt可表示成 ∫
0
x
f(t)dt=[*]∫
0
T
f(t)dt+φ(x). φ(x)在(-∞,+∞)连续且以T为周期,于是,φ(x)在[0,T]有界,在(-∞,+∞)也有界.因此 [*] (Ⅲ)因f(x)≥0,所以当nT≤x<(n+1)T时, n∫
0
T
f(t)dt=∫
0
nT
f(t)dt≤∫
0
x
f(t)dt<∫
0
(n+1)T
f(t)dt=(n+1)∫
0
T
f(t)dt.
解析
转载请注明原文地址:https://kaotiyun.com/show/QYj4777K
0
考研数学二
相关试题推荐
设向量组(Ⅰ):α1,α2,…,αr可由向量组(Ⅱ):β1,β2,…,βr线性表示,则().
设A是m×n阶矩阵,若ATA=O,证明:A=O.
设f(u)是连续函数,证明:
求极限
设函数f(x)在x=1的某邻域内有定义,且满足|f(x)-2ex|≤(x-1)2,研究函数f(x)在x=1处的可导性.
D是圆域的一部分,如图8.18所示,则I=[*][*]作极坐标变换,圆周方程为(y+1)2+χ2=1,即χ2+y2=-2y,即r=-2sinθ,积分区域D:-[*]≤θ≤0,0≤r≤-2sinθ,于是[*]
如图8.12所示.[*]原式=[*]
求下列定积分:
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
已知f"(x)<0,f(0)=0,试证:对任意的两正数x1和x2,恒有f(x1+x2)<f(x1)+f(x2)成立.
随机试题
112总配线架直列保安单元排与横列测试单元排是()的。
镇肝熄风汤的功用包括
价值观的形成的关键期是自我意识的形成期是
房地产课税估价的目的是为了保证国家税收公平合理,为了避免纳税人偷税漏税和税务机关课税不公平,双方都要求对房地产价值进行评估。取得土地使用权所支付的金额作为扣除项目,以()形式取得土地使用权的,以合同为依据按土地价格进行扣除。
在双代号网络图中,为了正确地表达图中工作之间的关系,往往需要应用虚箭线。虚工作(虚线)表示工作之间的()。
下列关于形态理论的喇叭形的概念和应用,说法正确的有()。
研究者通常将短期政府债券的利率作为无风险利率的替代,这说明短期政府债券是无风险的。()
贾某赴新加坡出差,行前到某银行兑换500新加坡元,这时,银行使用的价格是()。
解答问题时,小明倾向于深思熟虑且错误较少,他的认知方式为()。
Women’smindsworkdifferentlyfrommen’s.Atleast,thatiswhatmostmenareconvincedof.Psychologistsviewthesubjectei
最新回复
(
0
)