首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β可用α1,α2,α3线性表示,但不可用α1,α2,α3线性表示.证明 (1)αa不可用α1,α2,…,αs-1线性表示; (2)αs可用α1,α2,…,αs-1,β线性表示.
已知β可用α1,α2,α3线性表示,但不可用α1,α2,α3线性表示.证明 (1)αa不可用α1,α2,…,αs-1线性表示; (2)αs可用α1,α2,…,αs-1,β线性表示.
admin
2019-08-12
73
问题
已知β可用α
1
,α
2
,α
3
线性表示,但不可用α
1
,α
2
,α
3
线性表示.证明
(1)α
a
不可用α
1
,α
2
,…,α
s-1
线性表示;
(2)α
s
可用α
1
,α
2
,…,α
s-1
,β线性表示.
选项
答案
r(α
1
,α
2
,…,α
s
,β)=r(α
1
,α
2
,…,α
s
),r(α
1
,α
2
,…,α
s-1
,β)=r(α
1
,α
2
,…,α
s-1
)+1 于是有 r(α
1
,α
2
,…,α
s
)=r(α
1
,α
2
,…,α
s-1
,β)≥r(α
1
,α
2
,…,α
s-1
,β) =r(α
1
,α
2
,…,α
s-1
)+1≥r(α
1
,α
2
,…,α
s
) 从而其中两个“≥”号都为等号.于是 r(α
1
,α
2
,…,α
s-1
)+1=r(α
1
,α
2
,…,α
s
) 因此,α
s
不可用α
1
,α
2
,…,α
s-1
线性表示. r(α
1
,α
2
,…,α
s-1
,β)=r(α
1
,α
2
,…,α
s-1
,β), 因此,α
s
可用α
1
,α
2
,…,α
s-1
,β线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/QcN4777K
0
考研数学二
相关试题推荐
(2005年)设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果|A|=1,那么|B|=_______.
(2018年)设A,B为n阶矩阵,记r(X)为矩阵X的秩,(XY)表示分块矩阵,则
设A是n×m矩阵,B是m×n矩阵(n<m),且AB=E.证明:B的列向量组线性无关.
设A=(aij)3×3是实正交矩阵,且a11=1。b=(1,0,0)T,则线性方程组Ax=b的解是______.
设c1,c2,…,cn均为非零实常数,A=(aij)n×n为正定矩阵,令bij=aijcicj(i,j=1,2,…,n),矩阵B=(bij)n×n,证明矩阵B为正定矩阵.
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0,证明:ξ∈(a,b),使|f"(ξ)|≥|f(b)一f(a)|。
证明可微的必要条件:设z=f(x,y)在点(x0,y0)处可微,则fx’(x0,y0)与fy’(x0,y0)都存在,且=fx’(x0,y0)△x+fy’(x0,y0)△y。
[*]其中C为任意常数
微分方程满足初值条件y(0)=0,的特解是___________.
考虑二元函数f(x,y)的下面4条性质:①f(x,y)在点(x0,y0)处连续;②f(x,y)在点(x0,y0)处的两个偏导数连续;③f(x,y)在点(x0,y0)处可微;④f(x,y)在点(x0,y0)处的两个偏导
随机试题
第一对鳃瘘开口位于甲状舌管囊肿和瘘开口位于
清泄的含义
关于在Word2003中打开文件,以下()是正确的。
根据民事诉讼法律制度的规定,下列关于民事公益诉讼的表述中,正确的有()。
在房地产市场调研中,描述性调研比探测性调研的调研目的()。
证明方程x2x=1至少有一个小于1的根.
某博物馆将所有志愿者分成A、B、C、D四组(每个志愿者只能分配到一个组)。已知A组和B组共有80人,B组和C组共有87人,C组和D组共有92人,据此可以推断,A组和D组共有________________人。
对于长度为n的顺序存储的线性表,当随机插入和删除—个元素时,需平均移动元素的个数为【】。
以下叙述中正确的是()。
WhichofthefollowingsentencesdoesNOTincludeanappositive(clause)?
最新回复
(
0
)