首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知β可用α1,α2,α3线性表示,但不可用α1,α2,α3线性表示.证明 (1)αa不可用α1,α2,…,αs-1线性表示; (2)αs可用α1,α2,…,αs-1,β线性表示.
已知β可用α1,α2,α3线性表示,但不可用α1,α2,α3线性表示.证明 (1)αa不可用α1,α2,…,αs-1线性表示; (2)αs可用α1,α2,…,αs-1,β线性表示.
admin
2019-08-12
56
问题
已知β可用α
1
,α
2
,α
3
线性表示,但不可用α
1
,α
2
,α
3
线性表示.证明
(1)α
a
不可用α
1
,α
2
,…,α
s-1
线性表示;
(2)α
s
可用α
1
,α
2
,…,α
s-1
,β线性表示.
选项
答案
r(α
1
,α
2
,…,α
s
,β)=r(α
1
,α
2
,…,α
s
),r(α
1
,α
2
,…,α
s-1
,β)=r(α
1
,α
2
,…,α
s-1
)+1 于是有 r(α
1
,α
2
,…,α
s
)=r(α
1
,α
2
,…,α
s-1
,β)≥r(α
1
,α
2
,…,α
s-1
,β) =r(α
1
,α
2
,…,α
s-1
)+1≥r(α
1
,α
2
,…,α
s
) 从而其中两个“≥”号都为等号.于是 r(α
1
,α
2
,…,α
s-1
)+1=r(α
1
,α
2
,…,α
s
) 因此,α
s
不可用α
1
,α
2
,…,α
s-1
线性表示. r(α
1
,α
2
,…,α
s-1
,β)=r(α
1
,α
2
,…,α
s-1
,β), 因此,α
s
可用α
1
,α
2
,…,α
s-1
,β线性表示.
解析
转载请注明原文地址:https://kaotiyun.com/show/QcN4777K
0
考研数学二
相关试题推荐
(2004年)设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*是A的伴随矩阵,E是单位矩阵,则|B|=_______.
(2018年)设A,B为n阶矩阵,记r(X)为矩阵X的秩,(XY)表示分块矩阵,则
设向量组α1,α2,α3线性相关,而α2,α3,α4线性无关,问:(1)α1能否用α2,α3线性表示?并证明之;(2)α4能否用α1,α2,α3线性表示?并证明之.
求下列曲线的渐近线:
已知f(x)的一个原函数为cosx,g(x)的一个原函数为x2,下列函数哪些是复合函数f[g(x)]的原函数?(1)x1(2)cos2x(3)cos(x2)(4)cosx
设D由抛物线y=x2,y=4x2及直线y=1所围成.用先x后y的顺序,将I=化成累次积分.
证明:方阵A与所有同阶对角矩阵可交换的充分必要条件是A为对角矩阵.
微分方程满足初值条件y(0)=0,的特解是___________.
微分方程y"一2y’+y=ex的特解形式为(其中A,B,C,D为常数)()
两个相同直径为2R>0的圆柱体,它们的中心轴垂直相交,则此两圆柱体公共部分的体积为()(所画出的图形的体积是要求的,如图)
随机试题
为完成课题研究任务,某单位党组拟从甲、乙、丙、丁四名干部中选出一名出国考察。在未公布选派人员名单时,甲讲:“最有可能是我而其他人不可能被选中”。乙讲:“被选中的人在我和丙两人之中”。丙讲:“选中的人不是甲就是我。”丁讲:“四人中选一人,非我莫属!”后来,党
Shehaslotsofbooks,_____thatsheissoyoung.
患儿,6岁。发热咳嗽5天。证见发热,无汗,呛咳不爽,呼吸气急,痰白而稀,咽不红,舌淡红,苔薄自,脉浮紧。治疗首选方()
以下为肝性脑病的诱发因素,哪项除外
国家药品监督管理部门对鸡西市晨光药业有限公司进行飞行检查,在对该企业进行飞行检查中发现:该企业擅自改变注册地址,企业未履行合法变更手续;企业质量管理部门未有效履行工作职责;该企业对药品验收时,将药品放进了合格区;检查发现企业质量负责人赵某在计算机系统中分配
某套利者在4月1日买入7月铝期货合约的同时卖出8月铝期货合约,价格分别为13420元/吨和13520元/吨,持有一段时间后,价差扩大的情形是()。
下列关于保证收益理财产品的说法中,不正确的是()。
文物价值观具有相对的稳定性和持久性,但也会随着社会环境、个人人生观、世界观的改变而发生变化。由于社会地位、文化差异、利益关系等原因,使得人们的文物价值观在不同的时间、地点、场合都会表现出很大的不同。政府的文物价值观可能取决于决策人员,文物工作者的文物价值观
下列事物中,不属于历史唯物主义“社会存在”范畴的有()。
Themainpurposeofthistextisto_________.Atwhichofthefollowingtimeswillthebusleavethemainhall?
最新回复
(
0
)