首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知P为3阶非零矩阵,且满足PQ=O,则 ( )
已知P为3阶非零矩阵,且满足PQ=O,则 ( )
admin
2018-09-25
40
问题
已知
P为3阶非零矩阵,且满足PQ=O,则 ( )
选项
A、当t=6时.P的秩必为1
B、当t=6时,P的秩必为2
C、当t≠6时,P的秩必为1
D、当t≠6时,P的秩必为2
答案
C
解析
“AB=0”是考研出题频率极高的考点,其基本结论为:
①A
m×s
B
s×n
=O=>r(A)+r(B)≤s;
②A
m×s
B
s×n
=O=>组成B的每一列都是A
m×s
X=0的解向量.
对于本题,
PQ=O=>r(P)+r(Q)≤3=>1≤r(P)≤3-r(Q).
当t=6时,r(Q)=1=>1≤r(P)≤2≥r(P)=1或2,故A和B都错;
当t≠6时,r(Q)=2=>1≤r(P)≤1=>r(P)=1.故C正确,D错.
转载请注明原文地址:https://kaotiyun.com/show/Qeg4777K
0
考研数学一
相关试题推荐
设α,β均为3维列向量,βT是β的转置矩阵,如果则αTβ=___________.
设A,B,C均为n阶矩阵,其中C可逆,且ABA=C-1,证明BAC=CAB.
设4阶矩阵满足关系式A(E—C-1B)TCT=E,求A.
已知线性方程组的通解是(2,1,0,3)T+k(1,一1,2,0)T,如令αi=(ai,bi,ci,di)T,i=1,2,…,5.试问:(Ⅰ)α1能否由α2,α3,α4线性表出?(Ⅱ)α4能否由α1,α2,α3线性表出?并说明理由.
设n(n≥3)阶矩阵A=,如伴随矩阵A*的秩r(A*)=1,则a为
设X1,X2,…,X10是来自正态总体X~N(0,22)的简单随机样本,求常数a,b,c,d,使Q=a+b(X2+X3)2+c(X4+X5+X6)2+d(X7+X8+X9+X10)2服从χ2分布,并求自由度m.
设n阶矩阵A=,证明行列式|A|=(n+1)an.
设流速V=(x2+y2)j+(z-1)k,求下列情形流体穿过曲面∑的体积流量Q(如图9.69):(Ⅰ)∑为圆锥面x2+y2=z2(0≤z≤1),取下侧;(Ⅱ)∑为圆锥体(z2≥x2+y2,0≤z≤1)的底面,法向量朝上.
已知3阶矩阵A的第1行元素全是1,且(1,1,1)T,(1,0,一1)T,(1,一1,0)T是A的3个特征向量,求A.
随机试题
某患者,2个月前外伤后视力下降,检查发现其玻璃体明显血性混浊,透过混浊的玻璃体,尚能隐约见到后极部视网膜平伏。对于该患者玻璃体混浊的程度为
利湿除痰不常用于治疗
先兆子痫者,选用解痉药物为()。
甲妻病故,膝下无子女,养子乙成年后常年在外地工作。甲与村委会签订遗赠扶养协议,约定甲的生养死葬由村委会负责,死后遗产归村委会所有。后甲又自书一份遗嘱,将其全部财产赠与侄子丙。甲死后,乙就甲的遗产与村委会以及丙发生争议。对此,下列选项正确的是(
香港房地产经纪业的基本制度有()。
中小学教师与教育专家、学者合作,围绕教育教学实践中的问题,不断地计划、行动、观察和反思,通过解决实际问题,以达到改进教育教学实践的目的。这种教育研究属于()。
简述我国宪法作为根本法的特征。
党的思想路线的前提和基础是()
Awisemanoncesaidthattheonlythingnecessaryforthetriumphofevilisforgoodmentodonothing.So,asapoliceoffice
LisaFryandPaulaTurnergrewupacrossthestreetfromeachotherinTwinFalls.Theynever【C1】______theirfriendshipwouldl
最新回复
(
0
)