首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,试证α1,α2,α3线性无关.
设A是n阶矩阵,α1,α2,α3是n维列向量,且α1≠0,Aα1=α1,Aα2=α1+α2,Aα3=α2+α3,试证α1,α2,α3线性无关.
admin
2021-02-25
66
问题
设A是n阶矩阵,α
1
,α
2
,α
3
是n维列向量,且α
1
≠0,Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
3
=α
2
+α
3
,试证α
1
,α
2
,α
3
线性无关.
选项
答案
由Aα
1
=α
1
,Aα
2
=α
1
+α
2
,Aα
3
=α
2
+α
3
,得(A-E)α
1
=0,(A-E)α
2
=α
1
,(A-E)α
3
=α
2
. 设数λ
1
,λ
2
,λ
3
,使 λ
1
α
1
+λ
2
α
2
+λ
3
α
3
=0, (1) 用A-E左乘上式两边,得 λ
2
α
1
+λ
3
α
2
=0. (2) 再用A-E左乘(2)式两边,得 λ
3
α
1
=0. 而α
1
≠0,于是λ
3
=0.代入(1)、(2),得 λ
2
=0,λ
1
=0, 故α
1
,α
2
,α
3
线性无关.
解析
本题考查向量组线性相关性的概念,是比较典型的证明方法.
转载请注明原文地址:https://kaotiyun.com/show/Qi84777K
0
考研数学二
相关试题推荐
设0<k<1,f(x)=kx一arctanx.证明:f(x)在(0,+∞)中有唯一的零点,即存在唯一的x0∈(0,+∞),使f(x0)=0.
证明
设函数f(x)在(0,+∞)上二阶可导,且f’’(x)>0,记un=f(n),n=1,2,…,又u1<u2,证明
证明:方阵A是正交矩阵的充分必要条件是|A|=±1,且若|A|=1,则它的每一个元素等于自己的代数余子式,若|A|=一1.则它的每个元素等于自己的代数余子式乘一1.
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。将β1,β2,β3由α1,α2,α3线性表示。
设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T.(1)求A的其他特征值与特征向量;(2)求A.
设矩阵,B=P—1A*P,求B+2E的特征值与特征向量,其中A*为A的伴随矩阵,E为三阶单位矩阵。
随机试题
程序控制类指令的功能是()。
简述依法行政的作用与意义。
外阴血肿最易发生的部位是
我国建设工程监理制度中,吸收了FIDIC合同条件的有关内容,对工程监理企业和监理工程师提出了( )的要求。
外贸企业的跟单员在出货结束后就可将工厂全部货款付给工厂()
中国人民银行根据国际外汇市场行情每日公布人民币汇率( )。
《劳动争议调解仲裁法》规定:劳动争议申请仲裁的时效期间为(),仲裁时效期间从当事人知道或者应当知道其权利被侵害之日起计算。
ABC公司2012年的税后利润为420万元,所得税税率为25%,全年固定成本和利息费用总额共为2350万元,其中公司今年年初发行了一种债券,发行债券数量为1万张,债券年利息为当年利息总额的40%,发行价格为1050元,发行费用占发行价格的2%。预计下年
某卷烟厂为增值税一般纳税人,主要生产A牌卷烟(不含税调拨价100元/标准条)及雪茄烟,2015年10月发生如下业务:(1)从烟农手中购进烟叶,买价100万元并按规定支付了10%的价外补贴,将其运往甲企业委托加工烟丝,发生不含税运费8万元,取得货运增值税专
生命不是一种哲学,不是一个问题,而是一个奥秘。(neither…nor...but…)
最新回复
(
0
)