设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T. (1)求A的其他特征值与特征向量; (2)求A.

admin2019-07-22  39

问题 设A为三阶实对称矩阵,A的每行元素之和为5,AX=0有非零解且λ1=2是A的特征值,对应特征向量为(-1,0,1)T
    (1)求A的其他特征值与特征向量;
    (2)求A.

选项

答案(1)因为A的每行元素之和为5,所以有[*], 即A有特征值λ2=5,对应的特征向量为[*] 又因为AX=0有非零解,所以r(A)<3,从而A有特征值0,设特征值0对应的特征向量为[*], 根据不同特征值对应的特征向量正交得[*] 解得特征值0对应的特征向量为[*] [*]

解析
转载请注明原文地址:https://kaotiyun.com/show/bUN4777K
0

最新回复(0)