首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
admin
2020-03-01
33
问题
设函数f(x)在(一∞,+∞)上有定义,则下述命题中正确的是( )
选项
A、若f(x)在(一∞,+∞)上可导且单调增加,则对一切x∈(一∞,+∞),都有f’(x)>0.
B、若f(x)在点x
0
处取得极值,则f’(x
0
)=0.
C、若f’’(x
0
)=0,则(x
0
,f(x
0
))是曲线y=f(x)的拐点坐标.
D、若f’(x
0
)=0,f’’(x
0
)=0,f’’’(x
0
)≠0,则x
0
一定不是f(x)的极值点.
答案
D
解析
若在(一∞,+∞)上f’(x)>0,则一定有f(x)在(一∞,+∞)上单调增加,但可导函数f(x)在(一∞,+∞)上单调增加,可能有f’(x)≥0.例如f(x)=x
3
在(一∞,+∞)上单调增加,f’(0)=0.故不选A.f(x)若在x
0
处取得极值,且f’(x
0
)存在,则有f’(x
0
)=0,但当f(x)在x
0
处取得极值,在x
0
处不可导,就得不到f’(x
0
)=0,例如f(x)=|x|在x
0
=0处取得极小值,它在x
0
=0处不可导,故不选B.如果f(x)在x
0
处二阶导数存在,且(x
0
,f(x
0
))是曲线的拐点坐标,则f’’(x
0
)=0,反之不一定,例如f(x)=x
4
在x
0
=0处f’’(0)=0,但f(x)在(一∞,+∞)没有拐点,故不选C.由此选D.
转载请注明原文地址:https://kaotiyun.com/show/QuA4777K
0
考研数学二
相关试题推荐
当χ→0时,~aχ2,则a=_______.
设向量组α1,α2,α3线性无关,且α1+aα2+4α3,2α1+α2-α3,α2+α3线性相关,则a=_______.
设α1,α2,α3是四元非齐次线性方程组AX=b的三个解向量,r(A)=3.且α1+α2=,α2+α3=,则方程组AX=b的通解为_______.
设函数f(u,v)由关系式f[xg(y),y]=x+g(y)确定,其中函数g(y)可微,且g(y)≠0,则=______。
设n阶方阵A的各行元素之和均为零,且秩(A)=n一1,则齐次线性方程组AX=0的通解为________.
已知η1=[一3,2,0]T,η2=[一1,0,一2]T是线性方程组的两个解向量,试求方程组的通解,并确定参数a,b,c.
试分析下列各个结论是函数z=f(x,y)在点P0(x0,y0)处可微的充分条件还是必要条件.(1)二元函数的极限f(x,y)存在;(2)二元函数z=f(x,y)在点(x0,y0)的某个邻域内有界;(3)f(x,y0)=f(x0,y0),f(x0,y)
设当x→0时,(1一cosx)ln(1+x2)是比xsinxn高阶的无穷小,而xsinxn是比(ex2一1)高阶的无穷小,则正整数n等于()
下列关于向量组线性相关性的说法正确的个数为()①若α1,α2,…,αn线性相关,则存在全不为零的常数k1,k2,…,kn,使得k1α1+k2α2+…+knαn=0。②如果α1,α2,…,αn线性无关,则对任意不全为零的常数k1,k2,…,kn,
设矩阵Am×n的秩,r(A)=r(A|b)=m<n,则下列说法错误的是()
随机试题
构建社会主义和谐社会的工作方针是()。
下列哪项不是产生水肿的因素
消化性溃疡并出血的先兆是()
A.国家食品药品监督管理局B.国家药典委员会C.卫生部D.省级药品监督管理部门E.省级卫生行政部门根据《处方药和非处方药分类管理办法(试行)》非处方药的标签和说明书的批准部门是()。
下列哪些行为不构成限制竞争行为?
职业道德警示教育就是要提高会计人员法律意识,会计职业道德观念和辨别是非的能力。()
下列组合中,全部属于“东南亚国家联盟”国家的是:
运动员:兴奋剂
TheUnifiedModelingLanguageisastandardgraphicallanguageformodelingobject-orientedsoftware______canshowthebehavior
A、Itresemblesthebiologicalvirus.B、Itworksthesamewayasthehumanvirus.C、Itinfluencesthehumanasthebiologicalvir
最新回复
(
0
)