首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
若函数φ(x)及ψ(x)是x阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1,又x>x0时,φ(n)(x)>ψ(n)(x).试证:当x>x0时,φ(x)>ψ(x) .
若函数φ(x)及ψ(x)是x阶可微的,且φ(k)(x0)=ψ(k)(x0),k=0,1,2,…,n一1,又x>x0时,φ(n)(x)>ψ(n)(x).试证:当x>x0时,φ(x)>ψ(x) .
admin
2018-09-25
61
问题
若函数φ(x)及ψ(x)是x阶可微的,且φ
(k)
(x
0
)=ψ
(k)
(x
0
),k=0,1,2,…,n一1,又x>x
0
时,φ
(n)
(x)>ψ
(n)
(x).试证:当x>x
0
时,φ(x)>ψ(x) .
选项
答案
令u
(n-1)
(x)=φ
(n-1)
(x)-ψ
(n-1)
(x).在[x
0
,x]上用微分中值定理得 u
(n-1)
(x)-u
(n-1)
(x
0
)=u
(n)
(ξ).(x-x
0
),x
0
<ξ<x. 又由u
(n)
(ξ)>0可知u
(n-1)
(x)-u
(n-1)
(x
0
)>0.且u
(n-1)
(x
0
)=0,所以u
(n-1)
(x)>0,即当 x>x
0
时,φ
(n-1)
(x)>ψ
(n-1)
(x). 同理u
(n-2)
(x)=φ
(n-2)
(x)-ψ
(n-2)
(x)>0. 归纳有
(n-3)
(x)>0,…,u’(x)>0,u(x)>0.于是,当x>x
0
时,φ(x)>ψ(x).
解析
转载请注明原文地址:https://kaotiyun.com/show/Qvg4777K
0
考研数学一
相关试题推荐
若A=(4,5,6),则|A|=__________.
dx=____________.
设甲、乙两人随机决定次序对同一目标进行独立地射击,并约定:若第一次命中,则停止射击,否则由另一人进行第二次射击,不论命中与否,停止射击.设甲、乙两人每次射击命中目标的概率依次为0.6和0.5.(Ⅰ)计算目标第二次射击时被命中的概率;(Ⅱ)设X,Y分别表
设A,B为相互独立的随机事件,0<P(A)=P<1,且A发生B不发生与B发生A不发生的概率相等.记随机变量试求X与Y的相关系数ρ.
每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.试求:(Ⅰ)随机检验一箱产品,它能通过验收的概率p;
对同一目标接连进行3次独立重复射击,假设至少命中目标一次的概率为7/8,则单次射击命中目标的概率p=___________.
已知随机变量X的概率密度(Ⅰ)求分布函数F(x);(Ⅱ)若令Y=F(X),求Y的分布函数FY(y).
已知总体X服从参数为p(0<p<1)的几何分布:P{X=x}=(1一p)x-1p(x=1,2,…),X1,…,Xn是来自总体X的简单随机样本,则未知参数p的矩估计量为____________;最大似然估计量为____________.
设A是m×n矩阵,B=λE+ATA,证明当λ>0时,B是正定矩阵.
随机试题
下列关于《与贸易有关的知识产权协议》的表述中,不正确的是:()
平均指标主要有()。
在假设开发法估价中,估价结果的可靠程度主要取决于是否能准确预测开发后房地产价值以及需支出的成本、费用、税金等,而与判断房地产的开发利用方式无关。()[2008年考题]
编制按( )分解的资金使用计划,通常可利用控制项目进度的网络图进一步扩充而得。
小明是一个十分聪明的学生,但平时却十分贪玩,学习不用功。每次考试他都抱有侥幸心理,希望能凭运气过关。本学期末的考试小明没有取得理想成绩,他认为这是自己运气太差。针对小明的情况,试论教师应如何引导他进行归因。
下列有关我国史实的相关记载,出现时间最早的是()。
本世纪没有哪一位物理学家像爱因斯坦那样在二十世纪物理学最重要的两个领域都做出了开创性的贡献。他近乎_______地完成了狭义相对论和广义相对论,同时又与普朗克和玻尔共同奠定了量子力学的基础。他卓越的创造精神为每一个热爱独立思考的人,源源不断地提供前进的精神
Iftheideaofdutywasobsolete,howwouldsocietyfunction?Nobodywouldreportforwork,nobodywouldbotheraboutpayingthe
<CapsLock>键的功能是()。
Inmostculturesthroughouttheworld,thereisanexpectationthatwhenapersonreachesadulthood,marriageshouldsoonfollow
最新回复
(
0
)