首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α2+2α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为__________.
已知4阶方阵A=[α1,α2,α3,α4],α1,α2,α3,α4均为4维列向量,其中α1,α2线性无关,若β=α1+2α2一α3=α2+2α2+α3+α4=α1+3α2+α3+2α4,则Ax=β的通解为__________.
admin
2017-12-11
71
问题
已知4阶方阵A=[α
1
,α
2
,α
3
,α
4
],α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
1
,α
2
线性无关,若β=α
1
+2α
2
一α
3
=α
2
+2α
2
+α
3
+α
4
=α
1
+3α
2
+α
3
+2α
4
,则Ax=β的通解为__________.
选项
答案
[*],k
1
,k
2
∈R
解析
β=α
1
+2α
2
-α
3
=α
1
+α
2
+α
3
+α
4
=α
1
+3α
2
+α
3
+2α
4
可知
均为Ax=0的解.由于α
1
,α
2
线性无关,可知r(A)≥2.又由于Ax=0有两个线性无关的解β
1
一β
2
,β
2
一β
3
,可知Ax=0的基础解系中至少含有两个向量,也即4一r(A)≥2,即r(A)≤2.综上,r(A)=2,Ax=0的基础解系中含有两个线性无关的向量,故β
1
一β
2
,β
2
一β
3
即为Ax=0的基础解系.故Ax=β的通解为
转载请注明原文地址:https://kaotiyun.com/show/Qwr4777K
0
考研数学一
相关试题推荐
设φ(y)为连续函数.如果在围绕原点的任意一条逐段光滑的正向简单封闭曲线l上,曲线积分其值与具体l无关,为同一常数k.如果φ(y)具有连续的导数,求φ(y)的表达式.
设φ(y)为连续函数.如果在围绕原点的任意一条逐段光滑的正向简单封闭曲线l上,曲线积分其值与具体l无关,为同一常数k.证明:在任意一个不含原点在其内的单连通区域D0上,曲线积分与具体的c无关而仅与点A,B有关.
以下3个命题,①若数列{un}收敛于A,则其任意子数列{uni}必定收敛于A;②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A;③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A.正确的个数为(
设A为n阶矩阵且r(A)=n一1.证明:存在常数k,使得(A*)2=kA*.
设矩阵A满足(2E—C-1B)AT=C-1,且,求矩阵A.
设点A(1,0,0),B(0,1,1),线段AB绕x轴一周所得旋转曲面为S.求曲面S介于平面z=0与z=1之间的体积.
设f(x)是连续函数,F(x)是f(x)的原函数,则
假设函数f(x)和g(x)在[a,b]上存在二阶导数,并且g"(x)≠0,f(a)=f(b)=g(a)=g(b)=0,试证:在开区间(a,b)内g(x)≠0;
设则,f(x,y)在(0,0)处()
(01年)设则div(gradr)|(1,-2,2)=________.
随机试题
简述古埃及阿蒙霍特普四世(埃赫那吞)宗教改革的内容及其影响。(南京大学1997年世界古代中世纪史真题)
风眩常见证型有
女,42岁。间断腹泻、脓血便5年,粪便病原体培养阴性,广谱抗生素治疗无效。结肠镜检查:乙状结肠、直肠黏膜广泛弥漫充血、水肿、散在点状糜烂。最可能的诊断是
属于全合成的抗结核药是
国务院《企业职工伤亡事故报告和处理规定》规定,企业负责人接到()事故报告后,应当立即报告企业主管部门和企业所在地有关部门。
标志标明“封存”字样的计量器具,所处的状态是()。
下列各项中,属于影响未分配利润金额的有()。
生产物流的流程主要有()。
职务发明,是指企业、事业单位、社会团体、国家机关的工作人员执行本单位的任务或者主要是利用本单位的物质条件所完成的职务发明创造。根据上述定义,下列属于职务发明的是()。
StatisticsI.Statisticsin【T1】________A.Irregularitiesintheballoting:thethird-partycandidatePatBuchanangot【T2】____
最新回复
(
0
)