首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A*)2一4E的特征值为0,5,32.求A-1的特征值并判断A-1是否可对角化.
admin
2015-07-22
42
问题
设A为三阶矩阵,且有三个互异的正的特征值,设矩阵B=(A
*
)
2
一4E的特征值为0,5,32.求A
-1
的特征值并判断A
-1
是否可对角化.
选项
答案
设A的三个特征值为λ
1
,λ
2
,λ
3
,因为B=(A
*
)
2
一4E的三个特征值为0,5,32,所以 (A
*
)
2
的三个特征值为4,9,36,于是A
*
的三个特征值为2,3,6. 又因为|A
*
|=36=|A|
3-1
,所以|A|=6. 由[*],得λ
1
=3,λ
2
=2,λ
3
=1, 由于一对逆矩阵的特征值互为倒数,所以A
-1
的特征值为[*] 因为A
-1
的特征值都是单值,所以A
-1
可以相似对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/oIw4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]上连续,证明:存在ξ∈(0,1),使得∫0ξf(t)dt+(ξ-1)f’(ξ)=0.
袋中有一个红球,两个黑球,三个白球,现在放回的从袋中取两次,每次取一个,若以X、Y、Z分别表示两次取球所取得的红、黑与白球的个数.求P(X=1|Z=0);
设A,B为n阶矩阵.(1)是否有AB~BA;(2)若A有特征值1,2,…,n,证明:AB~BA.
设向量组α1=(1,3,2,0)T,α2=(7,0,14,3)T,α3=(2,一1,0,1)T,α4=(5,1,6,2)T,α5=(2,一1,4,1)T,求该向量组的秩和一个极大线性无关组,并把不是极大线性无关组的向量用此极大线性无关组线性表示.
已知二次型f(χ1,χ2,χ3)=XTAχ在正交变换χ=Qy下的标准形为y12+y22,且Q的第3列为.(Ⅰ)求矩阵A;(Ⅱ)证明A+E为正定矩阵,其中E为3阶单位矩阵.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解。
已知A=,求A的特征值、特征向量,并判断A能否相似对角化,说明理由.
设,讨论f(x)的单调性、凹凸性、拐点、水平渐近线.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任意一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为,求y=y(x).
设(X1,X2,…,X3)(n≥2)为标准正态总体,X的简单随机样本,则().
随机试题
患者,男,53岁。形体肥胖,胸闷胸痛反复发作1周,含服硝酸甘油1~2分钟可缓解。痰多色白,纳呆,脘胀,形寒肢冷,舌淡苔白滑,脉弦滑。其治法是
导致脉压增大的疾病是
有机磷中毒时,代谢失常的神经递质是()
下列选项中,不属于产业政策核心内容中的发展高技术产业政策内容的是()
按合同约定的券种、数量取得债券质权,并在回购期间拥有债券质权,这是全国银行间市场式质押交易中()。
销项税合计为( )元。以下关于酒类消费税的表述中,正确的是( )。
()是班级工作过程的最后一个环节。
一位领导者的影响作用是整体性的。也就是说,职权影响力和个人影响力在领导过程中,总是相互联系、相互交织地发挥作用的。对领导者来说,为了实现领导,必须有一定的职位权力,才能借以推进他所负责的工作。但是,如果领导者只凭职位权力去推进工作,甚至滥用权力,以权压人,
下列文种中属于陈述性的上行公文是()。
Itisacommonthemeinmanysciencefictionstoriesthattheworldmayonedaybe______byinsects.
最新回复
(
0
)