首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
设二次型f=2x12+2x22+ax32+2x1x2+2bx1x3+2x2x3经过正交变换X=QY化为标准形f=y12+y22+4y32,求参数a,b及正交矩阵Q.
admin
2019-09-27
30
问题
设二次型f=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
经过正交变换X=QY化为标准形f=y
1
2
+y
2
2
+4y
3
2
,求参数a,b及正交矩阵Q.
选项
答案
二次型f=2x
1
2
+2x
2
2
+ax
3
2
+2x
1
x
2
+2bx
1
x
3
+2x
2
x
3
的矩阵形式为 f=X
T
AX. 其中A=[*].因为Q
T
AQ=B=[*],所以A~B(因为正交矩阵的转置矩阵即为其逆矩阵),于是A的特征值为1,1,4. 而|λE-A|=λ
3
-(a+4)λ
2
+(4a-b
2
+2)λ+(-3a-2b+2b
2
+2),所以有 λ
3
-(a+4)λ
2
+(4a-b
2
+2)λ+(-3a-2b+2b
2
+2)=(λ-1)
2
(λ-4), 解得a=2,b=1.当λ
1
=λ
2
=1时,由(E-A)X=0得ξ
1
=[*].λ
3
=4时, 由(4E-A)X=0得ξ
3
=[*].显然ξ
1
,ξ
2
,ξ
3
两两正交,单位化为 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/R1S4777K
0
考研数学一
相关试题推荐
设函数f(x)在|x|<δ内有定义且|f(x)|≤x2,则f(x)在x=0处().
不等式的解集(用区间表示)为[].
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)﹦f(b)﹦2。证明存在ξ,η∈(a,b),使得f(η)﹢f’)﹦2eξ-η。
设随机变量X和Y分分别服从,已知P{X﹦0,Y﹦0}﹦。(I)求(X,Y)的联合分布律;(Ⅱ)求X和Y的相关系数;(Ⅲ)求P{X﹦1|X2﹢Y2﹦1}。
证明不等式3x<tanx﹢2sinx,x∈
设二次型为f﹦x12﹢2x22﹢6x32﹢2x1x2﹢2x1x3﹢6x2x3。(I)用可逆线性变换化二次型为标准形,并求所用的变换矩阵;(Ⅱ)证明二次型对应的矩阵A为正定矩阵,并求可逆矩阵U,使得A﹦UTU。
设半径为R的球面S的球心在定球面x2+y2+z2=a2(a>0)上,问R取何值时,球面S在定球面内的面积最大?
设3阶矩阵A的各行元素之和都为2,向量α1=(一1,1,1)T,α2=(2,一1,1)T都是齐次线性方程组AX=0的解.求A.
设向量组(I)与向量组(Ⅱ),若(I)可由(Ⅱ)线性表示,且r(I)=,r(Ⅱ)=r.证明:(I)与(Ⅱ)等价.
随机试题
酸碱指示剂一般是有机弱酸或有机弱碱,它们在不同pH值的溶液中呈现不同颜-色是因为()。
分层注水井全井注水量不应超过配注水量的±20%。()
在西方美学史上,提出“美是道德的象征”这一命题的美学家是()
成人常规心脏摄影,焦一片距离应为
“十二五”时期,要把符合落户条件的农业转移人口逐步转为城镇居民作为推进城镇化的()任务。
阶级矛盾和统治阶级内部矛盾的不可调和性,是警察产生的政治条件。( )
1.2013年6月22日,在柬埔寨首都金边召开的第37届世界遗产委员会会议一致审议通过中国的红河哈尼梯田文化景观列入《世界遗产名录》。红河哈尼梯田文化景观成为中国第31项世界文化遗产,中国世界遗产总数达到45项。汉文字史料记载就有1300多年以上
简述抵押权的实现。
信息系统项目完成后,最终产品或项目成果应置于(332)内,当需要在此基础上进行后续开发时,应将其转移到(333)后进行。(333)
HowtoReadEffectivelyManystudentstendtoreadbookswithoutanypurpose.Theyoftenreadabookslowlyandingreatdeta
最新回复
(
0
)