首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs是n维向量组,r(α1,α2,…,αs)=r,则( )不正确.
设α1,α2,…,αs是n维向量组,r(α1,α2,…,αs)=r,则( )不正确.
admin
2019-01-14
40
问题
设α
1
,α
2
,…,α
s
是n维向量组,r(α
1
,α
2
,…,α
s
)=r,则( )不正确.
选项
A、如果r=n,则任何n维向量都可用α
1
,α
2
,…,α
s
线性表示.
B、如果任何n维向量都可用α
1
,α
2
,…,α
s
线性表示,则r=n.
C、如果r=s,则任何n维向量都可用α
1
,α
2
,…,α
s
唯一线性表示.
D、如果r<n,则存在n维向量不能用α
1
,α
2
,…,α
s
线性表示.
答案
C
解析
利用“用秩判断线性表示”的有关性质.
当r=n时,任何n维向量添加进α
1
,α
2
,…,α
s
时,秩不可能增大,从而(A)正确.
如果(B)的条件成立,则任何n维向量组β
1
,β
2
,…,β
t
都可用α
1
,α
2
,…,α
s
线性表示,从而r(β
1
,β
2
,…,β
t
)≤r(α
1
,α
2
,…,α
t
).如果取β
1
,β
2
,…,β
n
是一个n阶可逆矩阵的列向量组,则得
n=r(β
1
,β
2
,…,β
n
)≤r(α
1
,α
2
,…,α
s
)≤n,从而r(α
1
,α
2
,…,α
s
)=n,(B)正确.
(D)是(B)的逆否命题,也正确.
由排除法,得选项应该为(C).下面分析为什么(C)不正确.
r=s只能说明α
1
,α
2
,…,α
s
线性无关,如果r<n,则用(B)的逆否命题知道存在n维向量不可用α
1
,α
2
,…,α
s
线性表示,因此(C)不正确.
转载请注明原文地址:https://kaotiyun.com/show/RNM4777K
0
考研数学一
相关试题推荐
设f(x)在[0,1]二阶可导,且f(0)=f(1)=0,试证:∈(0,1)使得
求函数f(x)=(2一t)e-tdt的最值.
在半径为a的半球外作一外切圆锥体,要使圆锥体体积最小,问高度及底半径应是多少?
设矩阵E为2阶单位矩阵,2阶矩阵B满足BA=B+2E,求|B|.
已知f(x)=在(一∞,+∞)存在原函数,求常数A以及f(x)的原函数.
设u=f(x,y,z,t)关于各变量均有连续偏导数,而其中由方程组确定z,t为y的函数,求
求常数a,使得向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(一2,a,4)T,β3=(一2,a,a)T线性表示,但是β1,β2,β3不可用α1,α2,α3线性表示.
AB=0,A,B是两个非零矩阵,则
已知(X,Y)在以点(0,0),(1,一1),(1,1)为顶点的三角形区域上服从均匀分布.(I)求(X,Y)的联合密度函数f(x,y);(Ⅱ)计算概率P{X>0,Y>0}
设f(x,y)与f(x,y)均为可微函数,且φ’(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是
随机试题
二经病或三经病同时发生的为
门脉性肝硬化的特点是
有一名病人,颅底骨折,合并脑脊液鼻漏,其错误的治疗方法是
初级卫生保健的八项要素不包括
十二经脉的命名主要结合了哪几个方面的内容()
一个数列为1,一1,2,一2,一1,1,一2,2,1,一1,2,一2,……则该数列第2009项为()。
下列关于基金销售工作的内容的说法中,错误的是()。
信息安全管理体系是指(9)。
Acreditcardthatonlyworkswhenithearsitsowner’svoicehasbeendevelopedbyUSscientists.Researchershopethatthe【B1】
(1)Whilethemissionofpublicschoolshasexpandedbeyondeducationtoincludesocialsupportandextra-curricularactivities,
最新回复
(
0
)