首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
admin
2017-07-28
51
问题
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证:
[∫
0
1
f(x)dx]
2
>∫
0
1
f
3
(x)dx.
选项
答案
即证[∫
0
1
f(x)dx]
2
一∫
0
1
f
3
(x)dx>0.考察F(x)=[∫
0
x
f(t)dt]
2
一∫
0
x
f
3
(t)dt, 若能证明F(x)>0(x∈(0,1])即可.这可用单调性方法. 令F(x)=[∫
0
x
f(t)dt]
2
一∫
0
x
f
3
(t)dt,易知F(x)在[0,1]可导,且 F(0)=0,F’(x)=f(x)[2∫
0
x
f(t)dt—f
2
(x)]. 由条件知,f(x)在[0,1]单调上升,f(x)>f(0)=0(x∈(0,1]),从而F’(x)与g(x)=2∫
0
x
f(t)dt—f
2
(x)同号.再考察 g’(x)=2f(x)[1一f’(x)]>0(x∈(0,1)), g(x)在[0,1]连续,于是g(x)在[0,1]单调上升,g(x)>g(0)=0(x∈(0,1]),也就有F’(x)>0(x∈(0,1]),即F(x)在[0,1]单调上升,F(x)>F(0)=0(x∈(0,1]).因此 F(1)=[∫
0
1
f(x)dx]
2
一∫
0
1
f
3
(x)dx>0.即结论成立。
解析
转载请注明原文地址:https://kaotiyun.com/show/8Ou4777K
0
考研数学一
相关试题推荐
=__________.
设f(x)是连续函数,则=__________.
已知函数f(x)在区间(1-δ,1+δ)内具有二阶导数,f’’(x)<0,且f(1)=f’(1)=1,则().
在曲线z=t,y=-t2,z=t3的所有切线中,与平面x+2y+z=4平行的切线
设L是不经过点(2,0),(-2,0)的分段光滑简单正向闭曲线,就L的不同情形计算
(2010年试题,19)设P为椭圆面S:x2+y2+z2一yz=1上的动点,若S在点P处的切平面与xOy平面垂直,求点P的轨迹C,并计算曲线积分其中∑是椭球面S位于曲线C上方的部分.
(2009年试题,17)椭球面S1是椭圆绕x轴旋转而成,圆锥面S2是过点(4,0)且与椭圆相切的直线绕轴旋转而成.求S1与S2之间的立体体积.
(2000年试题,五)计算曲线积分其中L是以点(1,0)为中心,R为半径的圆周(R>1),取逆时针方向.
(2001年试题,五)设试将f(x)展开成x的幂级数,并求级数的和.
设函数P(x,y),Q(x,y)在单连通区域D内有一阶连续偏导数,L为D内曲线,则曲线积分∫LPdx+Qdy与路径无关的充要条件为()
随机试题
(2015年真题)教育目的和培养目标是同一概念。
[*]
A.女贞子B.枸杞子C.龟甲D.鳖甲治疗肾虚骨痿,囟门不合,宜首选
下列哪些效应出现在核酸变性后
规划编制部门向规划批准机关提交规划草案时应报送()材料。
破产企业在破产清算期间资产的计算属性是()。
《巴塞尔新资本协议》与以前相比,主要创新在于()。
2015年福布斯全球企业前十强中,美国企业的市值总和为:
《中华人民共和国政府采购法》第二十四条规定,两个以上的自然人、法人或者其他组织可以组成一个联合体,以一个供应商的身份共同参加政府采购。以下关于联合体供应商的叙述,()是不正确的。
Recently,apossiblealternativewayofproducingpaperhasbeensuggestedbyagriculturalists:andenvironmentalists:aplant
最新回复
(
0
)