首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
admin
2017-07-28
41
问题
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证:
[∫
0
1
f(x)dx]
2
>∫
0
1
f
3
(x)dx.
选项
答案
即证[∫
0
1
f(x)dx]
2
一∫
0
1
f
3
(x)dx>0.考察F(x)=[∫
0
x
f(t)dt]
2
一∫
0
x
f
3
(t)dt, 若能证明F(x)>0(x∈(0,1])即可.这可用单调性方法. 令F(x)=[∫
0
x
f(t)dt]
2
一∫
0
x
f
3
(t)dt,易知F(x)在[0,1]可导,且 F(0)=0,F’(x)=f(x)[2∫
0
x
f(t)dt—f
2
(x)]. 由条件知,f(x)在[0,1]单调上升,f(x)>f(0)=0(x∈(0,1]),从而F’(x)与g(x)=2∫
0
x
f(t)dt—f
2
(x)同号.再考察 g’(x)=2f(x)[1一f’(x)]>0(x∈(0,1)), g(x)在[0,1]连续,于是g(x)在[0,1]单调上升,g(x)>g(0)=0(x∈(0,1]),也就有F’(x)>0(x∈(0,1]),即F(x)在[0,1]单调上升,F(x)>F(0)=0(x∈(0,1]).因此 F(1)=[∫
0
1
f(x)dx]
2
一∫
0
1
f
3
(x)dx>0.即结论成立。
解析
转载请注明原文地址:https://kaotiyun.com/show/8Ou4777K
0
考研数学一
相关试题推荐
观察知道,此题为“0/0”型.但不能用洛必达法则求解.应该以去掉分子中的模符号“||”为化简方向.
设常数a≠1/2,则=________.
如果0<β<α<π/2,证明
设二次型f=x12+x22+x32+2ax1x2+2βx2x3+2x1x3经正交变换x=Py化成.f=y22+2y32,P是三阶正交矩阵,试求常数a、β.
设f(x)为[0,1]上的单调增加的连续函数,证明
设f’(1)=a,则数列极限=___________.
计算二重积分I=,其中D为x2+y2=1,x2+y2=2x所围中间一块区域.
将f(x)=arctanx展开成x的幂级数.
设有一半径为R长度为l的圆柱体,平放在深度为2R的水池中(圆柱体的侧面与水面相切).设圆柱体的比重为ρ(ρ>1),现将圆柱体从水中移出水面,问需做多少功?
设(P(x,y),Q(x,y))=,n为常数,问∫LPdx+Qdy在区域D={(x,y)|(x,y)∈R2,(x,y)≠(0,0)}是否与路径无关.
随机试题
与麻醉药的强度有关,而不影响麻醉药吸收的因素为
关于乳牙牙龈瘘道的描述,以下正确的是
空调设备的自动监控系统中常用的温度传感器有()等类型。
甲、乙因买卖货物发生合同纠纷,甲向人民法院提起诉讼。开庭审理时,乙提出双方已经签订了仲裁协议,应通过仲裁方式解决。根据《仲裁法》的规定,对该案件的下列处理方式中,正确的是()。
应收票据在贴现时,其贴现息应该计入()。
如图7,该学生设计作业属于()。
________是指教师按照其特定的社会地位承担相应的社会角色,并表现出符合社会期望的行为模式。
不管是白天的煤炭还是晚上的煤炭,小明都感觉一样黑。这体现了知觉的()
我市提供了500套住房保障名额给外来务工者,符合资格都可以申请,结果只有100人报名,你认为原因是什么。如何解决?
Theword"open"isreallyusedalot.You’veprobablyheard"openup"inmanywaysovertheyears.Probablymostpeoplewouldli
最新回复
(
0
)