首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证: [∫01f(x)dx]2>∫01f3(x)dx.
admin
2017-07-28
42
问题
设f(x)在[0,1]连续,在(0,1)可导,f(0)=0,0<f’(x)<1(x∈(0,1)),求证:
[∫
0
1
f(x)dx]
2
>∫
0
1
f
3
(x)dx.
选项
答案
即证[∫
0
1
f(x)dx]
2
一∫
0
1
f
3
(x)dx>0.考察F(x)=[∫
0
x
f(t)dt]
2
一∫
0
x
f
3
(t)dt, 若能证明F(x)>0(x∈(0,1])即可.这可用单调性方法. 令F(x)=[∫
0
x
f(t)dt]
2
一∫
0
x
f
3
(t)dt,易知F(x)在[0,1]可导,且 F(0)=0,F’(x)=f(x)[2∫
0
x
f(t)dt—f
2
(x)]. 由条件知,f(x)在[0,1]单调上升,f(x)>f(0)=0(x∈(0,1]),从而F’(x)与g(x)=2∫
0
x
f(t)dt—f
2
(x)同号.再考察 g’(x)=2f(x)[1一f’(x)]>0(x∈(0,1)), g(x)在[0,1]连续,于是g(x)在[0,1]单调上升,g(x)>g(0)=0(x∈(0,1]),也就有F’(x)>0(x∈(0,1]),即F(x)在[0,1]单调上升,F(x)>F(0)=0(x∈(0,1]).因此 F(1)=[∫
0
1
f(x)dx]
2
一∫
0
1
f
3
(x)dx>0.即结论成立。
解析
转载请注明原文地址:https://kaotiyun.com/show/8Ou4777K
0
考研数学一
相关试题推荐
设f(x)为R上不恒等于零的奇函数,且f’(0)存在,则函数g(x)=f(x)/x()。
设函数f(x,y)连续,则二次积分等于().
设n元线性方程组Ax=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.讨论F(t)在区间(0,+∞)内的单调性;
求数列极限
设流体的流速v=(x2+y2)j+(z一1)k,∑为锥面,取下侧,则流体穿过曲面∑的体积流量是
设函数f(x)=x+aln(1+x)+bxsinx,g(x)=kx3,若f(x)与g(x)在x→0时是等价无穷小,求a,b,k,的值
计算二重积分I=,其中D为x2+y2=1,x2+y2=2x所围中间一块区域.
半圆形闸门半径为R米,将其垂直放入水中,且直径与水面齐平,设水的比重ρ=1。若坐标原点取在圆心,x轴正向朝下,则闸门所受压力P=()
随机试题
面神经分布的范围有
对处于创业期和拓展期的新兴公司进行资金融通的业务属于投资银行的()
关于君子人格理想的论说,主要集中在先秦儒家典籍之中。这些儒家典籍成为经典之后,历代学人不仅反复习诵,而且不断进行注疏阐释,在泱泱典籍中,形成了“经学”。先秦儒家关于君子的论说也就不断被传承和弘扬。由于儒家思想是中国历代主流意识形态的核心内容,所以经学几乎贯
恶性葡萄胎与绒毛膜癌的主要不同为
护士为卧床患者洗发时,以下操作不妥的是
根据《文物保护法》的规定,市级文物保护单位由()核定公布。
文明礼貌的核心是()。
物流中心的信息化建设一般以信息技术为基础,在一定的深度和广度上利用计算机技术、网络技术和数据库技术,控制和集成化管理企业物流运营活动中的所有信息,实现企业内外部信息的共享和有效利用,以提高企业的经济效益和市场竞争能力。()
对关系S和关系R进行集合运算,结果中既包含关系S中的所有元组也包含关系R中的所有元组,这样的集合运算称为()。
Genetics,thestudyofgenes,isgainingincreasingimportance.Genescan【B1】______manythings,fromwhomwelookliketowhat
最新回复
(
0
)