首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元线性方程组Ax=b,其中 当a为何值时,该方程组有唯一解,并求x1。
设n元线性方程组Ax=b,其中 当a为何值时,该方程组有唯一解,并求x1。
admin
2019-03-23
64
问题
设n元线性方程组Ax=b,其中
当a为何值时,该方程组有唯一解,并求x
1
。
选项
答案
由数学归纳法得到方程组系数矩阵的行列式|A|=D
n
=(n+1)a
n
。 当a≠0时,D
n
≠0,方程组有唯一解。将A的第一列换成b,得行列式为 [*]=D
n—1
=na
n—1
, 所以由克拉默法则得x
1
=[*]。
解析
本题主要考查的是非齐次线性方程组解的判定。
重点在于克拉默法则的应用,做题过程中要注意只有方程的个数和未知量的个数相等时才可使用该法则。对于n元非齐次线性方程组,当系数行列式D≠0时有唯一解,当系数行列式D=0时克拉默法则失效,方程组可能有解也可能无解。
转载请注明原文地址:https://kaotiyun.com/show/RXV4777K
0
考研数学二
相关试题推荐
设α,β都是n维非零列向量,A=αβT.证明:A相似于对角矩阵βTα≠0.
设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)的系数矩阵为(Ⅱ)的一个基础解系为η1=(2,-1,a+2,1)T,η2=(-1,2,4,a+8)T.(1)求(Ⅰ)的一个基础解系;(2)a为什么值时(Ⅰ)和(Ⅱ)有公共非零解?此时求出全部公共非零解
讨论p,t为何值时,方程组无解?有解?有解时写出全部解.
已知方程组总有解,则λ应满足_________.
已知4阶矩阵A=(α1,α2,α3,α4),其中α2,α3,α4线性无关,α1=2α2-α3.又设β=α1+α2+α3+α4,求AX=β的通解.
已知ξ1=(-3,2,0)T,ξ2=(-1,0,-2)T是方程组的两个解,则此方程组的通解是________.
证明3阶矩阵
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)内恒为零。
设f(x)在x=x0的邻域内连续,在x=x0的去心邻域内可导,且.证明:f’(x0)=M.
随机试题
嘧啶分解的代谢产物有:
患者32岁,足月妊娠顺产分娩后2天,自诉下腹部阵发性剧烈疼痛,哺乳时加剧。体格检查:连续体温37.7~37.9℃,脉搏62次/分钟,血压100/60mmHg,乳房不胀,恶露无臭味,色鲜红,子宫无压痛,会阴侧切口无红肿,血白细胞11×109/L.产后乳
在心理治疗师与患者开始建立治疗关系时需要注意的问题不包括
异烟肼与利福平合用治疗结核病,应定期检查()
下列关于基准地价评估的原理描述正确的是()。
工程中确定全面通风换气量的最常用方法是()。
资本成本是公司可以从现有资产获得的、符合投资人期望的最低收益率,也可作为判断投资项目是否可行的取舍标准。()
事业单位社会保障改革的重点是()。
影响政策有效执行的因素有很多,下列不属于政策以外的因素的是()。
如果你有空的话,请来参加我们的讨论会。
最新回复
(
0
)