首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的各行元素之和均为0,且A的伴随矩阵A*≠O,则线性方程组Ax=0的通解为__________________.
设n阶矩阵A的各行元素之和均为0,且A的伴随矩阵A*≠O,则线性方程组Ax=0的通解为__________________.
admin
2021-02-25
61
问题
设n阶矩阵A的各行元素之和均为0,且A的伴随矩阵A
*
≠O,则线性方程组Ax=0的通解为__________________.
选项
答案
k(1,1,…,1)
T
,k为任意实数
解析
本题考查齐次线性方程组有非零解的充要条件及解的结构.
由A的各行元素之和均为0知
于是(1,1,…,1)
T
是方程组Ax=0的一个非零解,从而r(A)<n,又因为A
*
≠O,得r(A)≥n-1,从而r(A)=n-1.故Ax=0的基础解系只含有一个线性无关的解向量.故Ax=0的通解为x=k(1,1,…,1)
T
,其中k为任意实数.
转载请注明原文地址:https://kaotiyun.com/show/RY84777K
0
考研数学二
相关试题推荐
设(Ⅰ)和(Ⅱ)都是3元非齐次线性方程组,(Ⅰ)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(Ⅰ)和(Ⅱ)的公共解.
设f(t)二阶可导,g(u,v)二阶连续可偏导,且z=f(2x-y)+g(x,xy),求
已知m个向量α1,…,αm线性相关,但其中任意m一1个向量都线性无关,证明:如果等式k1α1+…+kmαm=0和等式l1α1+…+lmαm=0都成立,则,其中l1≠0。
设,矩阵A,B是否相似?若A,B相似,求可逆矩阵P,使得P-1AP=B.
设函数f(χ)在区间[0,1]上连续,并设,∫01f(χ)dχ=a,求∫01dχ∫χ1f(χ)f(y)dy.
设0<k<1,f(x)=kx一arctanx.证明:f(x)在(0,+∞)中有唯一的零点,即存在唯一的x0∈(0,+∞),使f(x0)=0.
设函数f(x)连续可导,且f(0)=0,F(x)=∫0xtn-1f(x"一tn)dt,求
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式abc2≤27()5(a>0,b>0,c>0).
设A是n阶矩阵,证明:A=O的充要条件是AAT=O.
(1)求函数f(x)=的表达式,x≥0;(2)讨论函数f(x)的连续性.
随机试题
国际信贷业务中,长期贷款利率主要有()
在组织目标制定的过程中,战术性行政组织目标的制定应坚持的原则是
电子商务在四个方面改变了国际企业国际营销的方式,下列说法错误的是()
肾盂造影所见:肾盏变形,受压拉长,多为哪种疾病之影像肾盂造影所见,肾盂内充盈缺损影,多为哪种疾病之影像
医患关系是建立在医疗保健活动中产生的最重要、最基本的医疗
1997年《有效银行监管的核心原则》确定了一个有效监管体系所必须具备的25项基本原则,分7类,以下属于这7类的是( )。
地理老师讲到地形时,使用彩色图片的效果比只用黑白图片的效果好,这主要体现了知觉的()
下列说法错误的是()。
恩格斯在谈到事物普遍联系的“辩证图景”时指出:“当我们深思熟虑地考察自然界或人类历史或我们自己的精神生活的时候,首先呈现在我们眼前的,是一幅由种种联系和相互作用无穷无尽地交织起来的画面。”联系具有普遍性,表现在()
「すみません、この本がだれのですか。」「________。」
最新回复
(
0
)