首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A的各行元素之和均为0,且A的伴随矩阵A*≠O,则线性方程组Ax=0的通解为__________________.
设n阶矩阵A的各行元素之和均为0,且A的伴随矩阵A*≠O,则线性方程组Ax=0的通解为__________________.
admin
2021-02-25
63
问题
设n阶矩阵A的各行元素之和均为0,且A的伴随矩阵A
*
≠O,则线性方程组Ax=0的通解为__________________.
选项
答案
k(1,1,…,1)
T
,k为任意实数
解析
本题考查齐次线性方程组有非零解的充要条件及解的结构.
由A的各行元素之和均为0知
于是(1,1,…,1)
T
是方程组Ax=0的一个非零解,从而r(A)<n,又因为A
*
≠O,得r(A)≥n-1,从而r(A)=n-1.故Ax=0的基础解系只含有一个线性无关的解向量.故Ax=0的通解为x=k(1,1,…,1)
T
,其中k为任意实数.
转载请注明原文地址:https://kaotiyun.com/show/RY84777K
0
考研数学二
相关试题推荐
[*]
证明
设函数f(x)连续可导,且f(0)=0,F(x)=∫0xtn-1f(x"一tn)dt,求
设函数,数列{xn}满足lnxn+<1。证明xn存在,并求此极限。[img][/img]
设函数f(μ)在(0,+∞)内具有二阶导数,且z=满足等式=0。若f(1)=0,f’(1)=1,求函数f(μ)的表达式。
在球面x2+y2+z2=5R2(x>0,y>0,z>0)上,求函数f(x,y,z)=lnx+lny+3lnz的最大值,并利用所得结果证明不等式abc2≤27()5(a>0,b>0,c>0).
设向量组α1=(1,0,1)T,α2=(0,1,1)T,α3=(1,3,5)T不能由向量组β1=(1,1,1)T,β2=(1,2,3)T,β3=(3,4,a)T线性表示。求a的值;
设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数。求变换后的微分方程满足初始条件y(0)=0,y’(0)=的特解。
设f(x)在x=x0的某邻域U内有定义,在x=x0的去心邻域内可导,则下述命题:①f’(x0)存在,则f’(x)也必存在.②设f’(x)存在,则f’(x0)也必存在.③设f’(x0)不存在,则’(x0)也必不存在.④设f’(x)不存在,则’(x0)
设函数F(x,y)在(x0,y0)某邻域有连续的二阶偏导数,且F(x0,y0)=Fx’(x0,y0)=0,Fy’(x0,y0)>0,Fxx’’(x0,y0)
随机试题
人民法院、人民检察院和公安机关对于符合逮捕条件,有下列哪些情形的犯罪嫌疑人、被告人。可以监视居住?()
张老师在使用word编制试卷时,需要将试卷中所有的“不正确”三个字都加上着重号。若要批量完成这个任务,可使用Word软件中的()。
__________是TCP/IP簇网络层的核心,是Internet能够有效运行的基础。
女性,56岁。慢性肝炎病史20年患者。双上肢皮肤可见小动脉末端分支性扩张形成的血管痣,大小约2cm。应诊断为
下列属于钢筋连接方法的是()。
下列关于小导管注浆支护设计的要求中,正确的有()。
下列各项不属于物流基本功能的是()。
设f(x)在(一∞,+∞)上有定义,x0≠0为函数f(x)的极大值点,则().
关于无线微波扩频技术,以下______是错误的。
Manyphrasesusedtodescribemonetarypolicy,suchas"steeringtheeconomytoasoftlanding"or"atouchonthebrakes",mak
最新回复
(
0
)