首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e一x=0,求f(x).
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫0xf’(t)dt+2x∫01f(tx)dt+e一x=0,求f(x).
admin
2016-10-24
61
问题
设函数f(x)二阶连续可导,f(0)=1且有f’(x)+3∫
0
x
f’(t)dt+2x∫
0
1
f(tx)dt+e
一x
=0,求f(x).
选项
答案
因为x∫
0
1
f(tx)dt=∫
0
x
f(u)du,所以f’(x)+3∫
0
x
f(t)dt+2x∫
0
1
f(tx)dt+e
一x
=0可化为 f(x)+3∫
0
x
f’(t)dt+2∫
0
x
f(t)dt+e
一x
=0, 两边对x求导得f"(x)+3f’(x)+2f(x)=e
一x
, 由λ
2
+3λ+2=0得λ
1
=一1,λ
2
=一2, 则方程f"(x)+3f’(x)+2f(x)=0通解为C
1
e
一x
+C
2
e
一2x
. 令f"(x)+3f’(x)+2f(x)=e
一x
的一个特解为y
0
=axe
一x
,代入得a=1,则原方程的通解为f(x)=C
1
e
一x
+C
2
e
一2x
+xe
一x
. 由f(0)=1,f’(0)=一1得C
1
=0,C
2
=1,故原方程的解为f(x)=e
一2x
+xe
一x
.
解析
转载请注明原文地址:https://kaotiyun.com/show/RbH4777K
0
考研数学三
相关试题推荐
设a。+a1/2+…+an/n+1=0.证明:多项式f(x)=a。+a1x+…+anxn在(0,1)内至少有一个零点.
证明:与锥面z2=x2+y2相切的平面通过坐标原点.
指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形:(1)x-y=1;(2)x2-2y2=1;(3)x2-2y=1;(4)2x2+y2=
计算,其中f(x,y,z)为连续函数,∑为平面x-y+z=1在第四卦限部分的上侧.
在水平放置的椭圆底柱形容器内储存某种液体,容器的尺寸如图32所示,其中椭圆方程为x2/4+y2=1(单位:m),问(1)当液面在过点(0,y)(-1≤y≤1)处的水平线时,容器内液体的体积是多少m3?(2)当容器内储满了液体后,以0.16m
设f(x)∈C(1)[a,b],f(x)≥0,A为平面曲线y=f(x),a≤x≤b绕x轴旋转所得旋转曲面的面积,试用计算曲面面积的二重积分公式证明:并由此计算正弦弧段y=sinx,0≤x≤π绕z轴旋转所得旋转曲面的面积.
设z=z(x,y)是由方程x2+y2-z=φ(x+Y+z)所确定的函数,其中φ具有二阶导数,且φ’≠-1.(I)记
求下列闭区域Dˊ在所给变换下的象区域D,画出D的草图:(1)Dˊ={(u,v)|0≤v≤,0≤u≤1},x=u+v,y=u-v;(2)Dˊ={(u,v)|0≤v≤2-u,0≤u≤2},x=u+v,y=u2-v;(3)Dˊ={(u,v)|0≤v≤u,0
求z=x2+12xy+2y2在区域4x2+y2≤25上的最值.
求z=x2+12xy+2y2在区域4x2+y2≤25上的最值.
随机试题
下列关于手术过程中的无菌操作原则,错误的是【】
按照法律解释的主体和法律效力不同,可以分为()。
Inanycomprehensiontextyouwillfindwordsthatyoudon’tknow,Youcan【C1】______themupinadictionary,ofcourse,【C2】_____
A.后遗效应B.停药反应C.特异质反应D.过敏反应E.副作用青霉素注射可能引起
复方碘溶液治疗用于
与会计核算相比,统计核算()。
()是以个体的自身情况为参照系数,把每一评价对象的过去与现在进行比较,或把某个人的某些侧面相互进行比较。
学生容易受到外部环境因素的影响,具有“染于苍则苍,染于黄则黄”的特点,这主要体现了学生具有()。
爷爷走了,我伫立在他的坟前,往事______,小时候他对我讲神话传说、讲他的人生经历,大榕树下,爷爷讲得______,我听得______。现在一切都只能______在回忆中了。依次填入划横线处的词语,最恰当的一组是()
Asavolunteer,JohnApollosislosingweight—theold-fashionedway—byeatingless.Apolloshasloweredhisdailycaloricintake
最新回复
(
0
)