首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设λ1,λ2分别为n阶实对称矩阵A的最小和最大特征值,X1、X2分别为对应于λ1和λn的特征向量,记 f(X)=,X∈Rn,X≠0 证明:λ1≤f(X)≤λ,,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
设λ1,λ2分别为n阶实对称矩阵A的最小和最大特征值,X1、X2分别为对应于λ1和λn的特征向量,记 f(X)=,X∈Rn,X≠0 证明:λ1≤f(X)≤λ,,minf(X)=λ1=f(X1),maxf(X)=λn=f(Xn).
admin
2018-08-03
18
问题
设λ
1
,λ
2
分别为n阶实对称矩阵A的最小和最大特征值,X
1
、X
2
分别为对应于λ
1
和λ
n
的特征向量,记
f(X)=
,X∈R
n
,X≠0
证明:λ
1
≤f(X)≤λ
,
,minf(X)=λ
1
=f(X
1
),maxf(X)=λ
n
=f(X
n
).
选项
答案
只证最大值的情形(最小情形的证明类似):必存在正交变换X=PY(P为正交矩阵,Y=(y
1
,…,y
n
)
T
),使得X
T
AX[*]λ
1
y
1
2
+…+λ
n
y
n
2
≤λ
n
(y
1
2
,…,y
n
2
)=λ
n
‖Y‖
2
,由于正交变换不改变向量长度,故有‖Y‖
2
=‖X‖
T
=X
T
X,上式即X
T
AX≤λ
n
X
T
X,当X≠0时,X
T
X>0,即得f(x)=[*] =λ
n
,于是得maxf(X)=λ
n
。
解析
转载请注明原文地址:https://kaotiyun.com/show/Rgg4777K
0
考研数学一
相关试题推荐
设随机变量X的密度函数为f(x)=,则E(X)=___________,D(X)___________.
设A是正交矩阵,且|A|<0.证明:|E+A|=0.
设A为n阶矩阵,k为常数,则(kA)*等于().
设A,B都是n阶可逆矩阵,则().
设非负函数f(x)当x≥0时连续可微,且f(0)=1.由y=f(x),x轴,y轴及过点(x,0)且垂直于x轴的直线围成的图形的面积与y=f(x)在[0,x]上弧的长度相等,求f(x).
设矩阵A=为A*对应的特征向量.(1)求a,b及α对应的A*的特征值,(2)判断A可否对角化.
设A=有三个线性无关的特征向量,且λ=2为A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
求幂级数的和函数.
随机试题
以解毒消痈,化痰散结,活血祛瘀为主要功用的方剂是()
A.贝诺酯B.对乙酰氨基酚C.萘普生D.尼美舒利E.双氯芬酸选择性抑制COX-2的非甾体抗炎药()。
A.他达拉非B.甲睾酮C.西地那非D.丙酸睾酮E.非那雄胺血浆半衰期较短的治疗阴茎勃起功能障碍的5型磷酸二酯酶抑制剂是()。
某幕墙专业分包工程施工过程中,发生了一起安全生产事故,导致2人死亡。根据《建设工程安全生产管理条例》,此次事故应由()上报有关主管部门。
分析判断下列有关销售收入确认事项。甲公司向乙公司销售一批商品,商品已经发出,乙公司已经预付部分货款,剩余货款由乙公司开出一张商业承兑汇票,销售发票账单已交付乙公司。乙公司收到商品后,发现商品质量没有达到合同约定的要求,立即根据合同有关条款与甲公司交涉,
下列形容天气的语句是()。
美国诞生的标志是()。
如果你被录用到果洛州的一个乡镇,每天做繁琐的事情,又没有人指导,你怎么办?
阅读下面短文,回答问题。现在,我们能见到的最早的灯具是在战国中晚期墓中出土的。在战国中晚期墓中出土的灯具,结构已经很完善了,制作也很精美。如出土的中山国古墓中银首人俑灯和十五连枝铜灯,已不是原始阶段的灯具了,可以说是中国灯具中的精品。在它们以前,
Thecountry’sinadequatementalhealthsystemgetsthemostattentionafterinstancesofmassviolencethatthenationhasseen
最新回复
(
0
)