首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设3阶实对称矩阵A的各行元素之和为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次方程组AX=0的解. (1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
[2006年] 设3阶实对称矩阵A的各行元素之和为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次方程组AX=0的解. (1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
admin
2019-05-10
69
问题
[2006年] 设3阶实对称矩阵A的各行元素之和为3,向量α
1
=[一1,2,一1]
T
,α
2
=[0,一1,1]
T
都是齐次方程组AX=0的解.
(1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A.
选项
答案
认真分析题设条件,在A未知的情况下也能求出其特征值和特征向量.在此基础上将所求得的特征向量正交化,单位化即得Q. (1)由题设有A[1,1,1]
T
=[3,3,3]
T
=3[1,1,1]
T
,则λ
0
=3为A的特征值,α
0
=[1,1,1]
T
为A的属于λ
0
=3的特征向量(见命题2.5.1.4),于是A的属于特征值3的所有特征向量为k
0
α
0
(λ
0
为非零的任意常数). 又α
1
,α
2
为AX=0的非零解向量,故Aα
1
=0=0·α
1
,因而α
1
为A的属于特征值λ
1
=0的特征向量.同法可知,α
2
也是A的属于特征λ
2
=0的特征向量.因α
1
,α
2
线性无关,故A的属于特征值0的所有特征向量为k
1
α
1
+k
2
α
2
(k
1
,k
2
不全为零). (2)因0为A的二重特征值.现将属于多重特征值的特征向量α
1
,α
2
正交化(因α
1
,α
2
不正交),使用施密特正交化的方法,得到 β
1
=α
1
, β
2
=α
2
一[*] 则β
1
,β
2
正交.显然α
0
与β
1
,β
2
都正交,因它们是实对称矩阵不同特征值的特征向量. 下面将α
0
,β
1
,β
2
单位化,得到 [*] 令Q=[η
0
,η
1
,η
2
],则Q为正交矩阵,且有 Q
T
AQ=Q
-1
AQ=diag(3,0,0)=A. ①
解析
转载请注明原文地址:https://kaotiyun.com/show/RjV4777K
0
考研数学二
相关试题推荐
设A,B均为n阶可逆矩阵,且(A+B)2=E,则(E+BA一1)一1=()
证明:用二重积分证明
设A为m×n阶矩阵,且r(A)=m<n,则().
设f(χ)在[a,b]上连续,在(a,b)内可导(a>0),证明:存在ξ∈(a,b),使得=ξf′(ξ).
设f(u)可导,y=f(χ2)在χ0=-1处取得增量△χ=0.05时,函数增量△y的线性部分为0.15,则f′(1)=_______.
设f(χ)可导,y=f(cos2χ),当χ=-处取增量△χ=-0.2时,△y的线性部分为0.2,求f′().
设向量组α1,…,αn为两两正交的非零向量组,证明:α1,…,αn线性无关,举例说明逆命题不成立.
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
设2n阶行列式D的某一列元素及其余子式都等于a,则D=()
计算下列n阶行列式:(1)=_______;(2)=_______.
随机试题
背景资料: 承包人承担某堤防工程,工程项目的内容为堤段Ⅰ(土石结构)和堤段Ⅱ(混凝土结构),合同双方签订了合同:签约合同价为600万元,合同工期为120d。 合同约定: (1)工程预付款为签约合同的10%;当工程进度款累计达到签约合同价的60%时,从
简述项目管理的过程。
“社会知觉”的概念,最初的提出者是美国心理学家()。
易诱发急性胰腺炎的是()
A.口气臭秽B.口气酸臭C.口气酒臭D.口气腐臭E.口中散发烂苹果气味胃有宿食,可闻到
(2006年)下列哪种平面流动的等势线为一组平行的直线?()
下列内容中,属于单位工程进度计划应包括的有()。
银行业从业人员的下列行为中正确的是()。
为保持银行的清偿能力和流动性,商业银行贷款的期限结构必须与下列哪一项的期限结构匹配?()
设f(x)在区间(0,+∞)上连续,且严格单调增加.试求证:F(x)=在区间(0,+∞)上也严格单调增加.
最新回复
(
0
)