首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设3阶实对称矩阵A的各行元素之和为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次方程组AX=0的解. (1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
[2006年] 设3阶实对称矩阵A的各行元素之和为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次方程组AX=0的解. (1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
admin
2019-05-10
99
问题
[2006年] 设3阶实对称矩阵A的各行元素之和为3,向量α
1
=[一1,2,一1]
T
,α
2
=[0,一1,1]
T
都是齐次方程组AX=0的解.
(1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A.
选项
答案
认真分析题设条件,在A未知的情况下也能求出其特征值和特征向量.在此基础上将所求得的特征向量正交化,单位化即得Q. (1)由题设有A[1,1,1]
T
=[3,3,3]
T
=3[1,1,1]
T
,则λ
0
=3为A的特征值,α
0
=[1,1,1]
T
为A的属于λ
0
=3的特征向量(见命题2.5.1.4),于是A的属于特征值3的所有特征向量为k
0
α
0
(λ
0
为非零的任意常数). 又α
1
,α
2
为AX=0的非零解向量,故Aα
1
=0=0·α
1
,因而α
1
为A的属于特征值λ
1
=0的特征向量.同法可知,α
2
也是A的属于特征λ
2
=0的特征向量.因α
1
,α
2
线性无关,故A的属于特征值0的所有特征向量为k
1
α
1
+k
2
α
2
(k
1
,k
2
不全为零). (2)因0为A的二重特征值.现将属于多重特征值的特征向量α
1
,α
2
正交化(因α
1
,α
2
不正交),使用施密特正交化的方法,得到 β
1
=α
1
, β
2
=α
2
一[*] 则β
1
,β
2
正交.显然α
0
与β
1
,β
2
都正交,因它们是实对称矩阵不同特征值的特征向量. 下面将α
0
,β
1
,β
2
单位化,得到 [*] 令Q=[η
0
,η
1
,η
2
],则Q为正交矩阵,且有 Q
T
AQ=Q
-1
AQ=diag(3,0,0)=A. ①
解析
转载请注明原文地址:https://kaotiyun.com/show/RjV4777K
0
考研数学二
相关试题推荐
设f(χ)二阶可导,=1且f〞(χ)>0.证明:当χ≠0时,f(χ)>χ.
设f(χ)在[-a,a](a>0)上有四阶连续的导数,存在.(1)写出f(χ)的带拉格朗日余项的麦克劳林公式。(2)证明:存在ξ1,ξ2∈[-a,a],使得
用变量代换χ=lnt将方程+e2χy=0化为y关于t的方程,并求原方程的通解.
设矩阵A满足(2E-C-1B)AT=C-1,且求矩阵A.
设a是整数,若矩阵A=的伴随矩阵A*的特征值是4,-14,-14.求正交矩阵Q,使QTQ为对角矩阵.
设向量组(Ⅰ)α1,α2,α3;(Ⅱ)α1,α2,α3,α4;(Ⅲ)α1,α2,α3,α5,若向量组(Ⅰ)与向量组(Ⅱ)的秩为3,而向量组(Ⅲ)的秩为4.证明:向量组α1,α2,α3,α5-α4的秩为4.
设向量组线性相关,但任意两个向量线性无关,求参数t.
n维列向量组α1,…,αn-1线性无关,且与非零向量β正交.证明:α1,…αn-1,β线性无关.
设。计算行列式|A|;
设A=,计算行列式|A|.
随机试题
患者高血压病史多年,今晨猝然昏仆,不省人事,目合口张,鼻鼾息微,手撒肢冷,汗多,大小便自遗,肢体软瘫,舌萎,脉细弱或脉微欲绝。应选方
二氧化碳手提式灭火器的构件包括()。
下列舌象变化提示病情好转的是
该病治当:晚期症见喘咳心悸,肢体浮肿,尿少,舌质淡胖,脉沉细,方选:
某患者,饮食稍有不慎即易呕吐,时作时止,纳呆,面色优白,倦怠乏力,喜暖畏寒,四肢不温,口干而不欲饮,大便溏薄,舌质淡,苔薄白,脉濡弱。治其治法是
“孤阴不生,独阳不长”主要说明了阴阳关系的哪一方面
有关合同担保的说法中正确的是()I.合同担保可由当事人本人做出Ⅱ.合同担保可由第三方做出Ⅲ.合同担保必须由第三方做出Ⅳ.合同担保可由公民个人和国家机关做出
若某大学分配给计算机系和自动化系的IP地址块分别为211.112.15.128/26和211.112.15.192/26,聚合后的地址块为()。
Westarttounderstandthattradingsuccessfullyisgoingtotakemoretimeandmoreknowledgethanwe______.
A、Focusingonthegrammarwhilespeaking.B、Usingthelanguagefirstandfocusingonthegrammarlater.C、Graspingthegrammarb
最新回复
(
0
)