首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2006年] 设3阶实对称矩阵A的各行元素之和为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次方程组AX=0的解. (1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
[2006年] 设3阶实对称矩阵A的各行元素之和为3,向量α1=[一1,2,一1]T,α2=[0,一1,1]T都是齐次方程组AX=0的解. (1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得QTAQ=A.
admin
2019-05-10
97
问题
[2006年] 设3阶实对称矩阵A的各行元素之和为3,向量α
1
=[一1,2,一1]
T
,α
2
=[0,一1,1]
T
都是齐次方程组AX=0的解.
(1)求A的特征值和特征向量;(2)求正交矩阵Q和对角矩阵A,使得Q
T
AQ=A.
选项
答案
认真分析题设条件,在A未知的情况下也能求出其特征值和特征向量.在此基础上将所求得的特征向量正交化,单位化即得Q. (1)由题设有A[1,1,1]
T
=[3,3,3]
T
=3[1,1,1]
T
,则λ
0
=3为A的特征值,α
0
=[1,1,1]
T
为A的属于λ
0
=3的特征向量(见命题2.5.1.4),于是A的属于特征值3的所有特征向量为k
0
α
0
(λ
0
为非零的任意常数). 又α
1
,α
2
为AX=0的非零解向量,故Aα
1
=0=0·α
1
,因而α
1
为A的属于特征值λ
1
=0的特征向量.同法可知,α
2
也是A的属于特征λ
2
=0的特征向量.因α
1
,α
2
线性无关,故A的属于特征值0的所有特征向量为k
1
α
1
+k
2
α
2
(k
1
,k
2
不全为零). (2)因0为A的二重特征值.现将属于多重特征值的特征向量α
1
,α
2
正交化(因α
1
,α
2
不正交),使用施密特正交化的方法,得到 β
1
=α
1
, β
2
=α
2
一[*] 则β
1
,β
2
正交.显然α
0
与β
1
,β
2
都正交,因它们是实对称矩阵不同特征值的特征向量. 下面将α
0
,β
1
,β
2
单位化,得到 [*] 令Q=[η
0
,η
1
,η
2
],则Q为正交矩阵,且有 Q
T
AQ=Q
-1
AQ=diag(3,0,0)=A. ①
解析
转载请注明原文地址:https://kaotiyun.com/show/RjV4777K
0
考研数学二
相关试题推荐
设A,B均为n阶可逆矩阵,且(A+B)2=E,则(E+BA一1)一1=()
设A为3阶矩阵,P=(α1,α2,α3)为3阶可逆矩阵,Q=(α1+α2,α2,α3).已知pTAP=,则QTAQ=().
设f(χ)在[-a,a](a>0)上有四阶连续的导数,存在.(1)写出f(χ)的带拉格朗日余项的麦克劳林公式。(2)证明:存在ξ1,ξ2∈[-a,a],使得
设y=y(χ)是一向上凸的连续曲线,其上任意一点(χ,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=χ+1,求该曲线方程,并求函数y(χ)的极值.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=,Q=.(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设抛物线y=aχ2+bχ+c(a<0)满足:(1)过点(0,0)及(1,2);(2)抛物线y=aχ2+bχ+c与抛物线y=-χ2+2χ所围图形的面积最小,求a,b,c的值.
设A=,已知A有三个线性无关的特征向量且λ=2为矩阵A的二重特征值,求可逆矩阵P,使得P-1AP为对角矩阵.
设f(χ)可导,y=f(cos2χ),当χ=-处取增量△χ=-0.2时,△y的线性部分为0.2,求f′().
设α1,αn为n个m维向量,且m<n.证明:α1,…,αn线性相关.
设矩阵A=,三阶矩阵B满足ABA*=E—BA-1,试计算行列式|B|。
随机试题
美国管理专家艾伦·莱金提出的优化时间的方法是【】
兴奋性突触后电位的形成是由突触后膜对下列哪些离子通透性增加所致()。
对溺水所致呼吸心搏骤停者,其紧急处理措施最重要的是
Died危象见于
国家等级水准网的布设原则有()。
综合单价法中的单价也称为( )。
UFO报表最多可容纳()张表页。
某国的政治风险评分为2.7,经济风险评分为3.5,法律风险评分为1.3,税收风险评分为2.8,运作风险评分为2.4,安全性评分为1.1,则使用WMRC的计算方法得到的国家综合风险是()。
Linux在安装时会创建一些默认的目录,如下表所示:依据上述表格,在空(1)一(6)中填写恰当的内容(其中空1在候选答案中选择)。①对于多分区的Linux系统,文件目录树的数目是(1)。②Linux系统的根目录是(2),默认的用户主目录在(3)目录
A、Certainthingscannotbelearnedfrombooks.B、Foreignstudentshavebetterlifeoncampus.C、Choiceofwheretolivevariesf
最新回复
(
0
)