首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设D={(r,θ)|2≤r≤2(1+cosθ),一π/2≤θ≤π/2},f(x,y)在R2上连续,且满足f(x,y)=x+yf(x,y)dxdy,求f(x,y)及I=xf(x,y)dxdy
设D={(r,θ)|2≤r≤2(1+cosθ),一π/2≤θ≤π/2},f(x,y)在R2上连续,且满足f(x,y)=x+yf(x,y)dxdy,求f(x,y)及I=xf(x,y)dxdy
admin
2022-06-09
43
问题
设D={(r,θ)|2≤r≤2(1+cosθ),一π/2≤θ≤π/2},f(x,y)在R
2
上连续,且满足f(x,y)=x+y
f(x,y)dxdy,求f(x,y)及I=
xf(x,y)dxdy
选项
答案
如图所示,由D关于x轴对称,知[*]ydxdy=0 记A=[*]f(x,y)dxdy([*]f(x,y)dxdy是一个常数),则已知等式可化为f(x,y)=x+Ay,故 A=[*]f(x,y)dxdy=[*]dxdy+A[*]ydxdy =∫
-π/2
π/2
dθ∫
2
2(1+cosθ)
rcosθ·rdr+0 =8/3∫
-π/2
π/2
[(1+cosθ)-1]cosθdθ =16/3∫
0
π/2
(3cos
3
θ+3cos
3
θ+cos
4
θ)dθ =16/3(2+15π)=32/3+5π 于是 f(x+y)=x+(32/3+5π)y I=[*]xf(x,y)dxdy=[*][x
2
+(32/3+5π)xy]dxdy 由x
2
+y
2
≤1关于y=x对称,xy关于x是奇函数,可知 I=[*]x
2
dxdy=1/2[*](x
2
+y
2
]dxdy =1/2∫
0
2π
dθ∫
0
1
r
2
·rdr=1/2×2π×1/4=π/4 [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/Rnf4777K
0
考研数学二
相关试题推荐
设有齐次线性方程组Ax=0及Bx=0,其中A,B均为m×n矩阵,现有以下4个命题①若Ax=0的解均是Bx=0的解,则R(A)≥R(B);②若R(A)≥R(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则R(A)=R(B);④若R
曲线y=1∕f(x)有铅垂渐近线的充分条件是[].
设函数f(x)在|x|<δ内有定义且|f(x)|≤x3,则f(x)在x=0处().
向量组α1=(1,3,5,一1)T,α2=(2,一1,一3,4)T,α3=(6,4,4,6)T,α4=(7,7,9,1)T,α5=(3,2,2,3)T的极大线性无关组是()
曲线()
z’x(x0,y0)=0和z’y(x0,y0)=0是函数z=z(x,y)在点(x0,y0)处取得极值的()
设,则当x→0时,两个无穷小的关系是().
二次型f=xTAx经过满秩线性变换x=Py可化为二次型yTBy,则矩阵A与B()
设f(x)有一阶连续导数,f(0)=0,当x→0时,∫0ff(x)f(t)dt与x2为等价无穷小,则f’(0)等于
设f(χ)在χ=0处二阶可导,f(0)=0且=2,则().
随机试题
某企业设备的运行周期为253小时,在其运行期间共运行了236小时,其中发生了5次故障,故障时间分别为3.4小时,3小时,3.8小时,2.6小时,4.2小时。试求该设备的故障率。
在需要层次理论中,地位属于()
直到不久前,科学家们才排除了月球上存在生物的可能性。
某成年男性因全身肌痛、面部水肿、视力障碍来医院就诊。自述1个月前曾参加过一个大型会议,会议期间曾聚餐,与会者中已有数十人出现全身肌痛等症状。最可能的诊断是
下列有关抗菌药作用机制的叙述哪项是错误的
建设项目管理的类型可以按( )几方面划分。
国库是办理预算收入的收纳、划分、留解和库款支拨的专门机构,也称中央国库。()
相对于其他职业生涯发展阶段来说,员工在()阶段更加注重自己的经济收入。
某投资者计划2019年年初购置一处现行市场价格为1000万元的房产。由于资金不足,房主提出了四种延期付款方案供其选择。方案一:2020年至2029年,每年年初付款155万元。方案二:2024年至2030年,每年年初付款280万元。方案三
卢梭在《论人类不平等的起源和基础》中说道:“我认为,在人类的一切知识中,最有用但也最不完善的知识就是关于人的知识。”马克思的唯物史观则破解了“人是什么”之谜,指出人的本质在其现实性上是()。
最新回复
(
0
)