首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
设α1,α2,α3都是n维非零向量,证明:α1,α2,α3线性无关对任何数s,t,α1+sα3,α2+tα3都线性无关.
admin
2018-11-20
21
问题
设α
1
,α
2
,α
3
都是n维非零向量,证明:α
1
,α
2
,α
3
线性无关
对任何数s,t,α
1
+sα
3
,α
2
+tα
3
都线性无关.
选项
答案
“[*]”用定义法也不麻烦(请读者自己做),但是用C矩阵法更加简单. α
1
+sα
3
,α
2
+tα
3
对α
1
,α
2
,α
3
的表示矩阵为 [* 显然对任何数s,t,C的秩都是2,于是α
1
+sα
3
,α
2
+tα
3
的秩为2,线性无关. “[*]”在s=t=0时,得α
1
,α
2
线性无关,于是只要再证明α
3
不可用α
1
,α
2
线性表示.用反证法.如果α
3
可以用α
1
,α
2
线性表示,设 α
3
=c
1
α
1
+c
2
α
2
则因为α
3
不是零向量,c
1
,c
2
不能全为0.不妨设c
1
≠0,则有 c
1
(α
1
一[*])+c
2
α
2
=0, 于是α
1
一[*],α
2
线性相关,即当[*],t=0时α
1
+sα
3
,α
2
+tα
3
相关,与条件矛盾.
解析
转载请注明原文地址:https://kaotiyun.com/show/RuW4777K
0
考研数学三
相关试题推荐
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0.
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
设函数f(x,y,z)一阶连续可偏导且满足f(tx,ty,tz)=tkf(x,y,z).证明:
设总体X~B(1,p).X1,X2,…,Xn是来自X的样本.(1)求(X1,X2,…,Xn)的分布律;(2)求,E(S2).
设(x1,x1,…,xn)和(x1,x1,…,xn)是参数θ的两个独立的无偏估计量,且方差是方差的4倍.试求出常数k1与k2,使得是θ的无偏估计量,且在所有这样的线性估计中方差最小.
1极限式中含幂指函数(l+xlnx),首先用换底法将其化为以e为底的指数函数.
设数列{an}满足条件:a0=3,a1=1,an—2一n,(n—1)an=0(n≥2)。S(x)是幂级数anxn的和函数。(Ⅰ)证明:S"(x)一S(x)=0;(Ⅱ)求S(x)的表达式。
设随机变量X与Y的相关系数为0.5,E(X)=E(Y)=0,E(X2)=E(Y2)=2,则E[(X+Y)2]=________。
已知三阶矩阵A和三维向量x,使得x,Ax,A2X线性无关,且满足A3X=3Ax—2A2x。(Ⅰ)记P=(x,Ax,A2X)。求三阶矩阵B,使A=PBP—1;(Ⅱ)计算行列式|A+E|。
设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α1+α2+α3。如果A3β=Aβ,求秩r(A—E)及行列式|A+2E|。
随机试题
测试完成研发无形资产时,应
机体处于寒冷环境时,甲状腺激素分泌增多属于
辅酶磷酸吡哆醛的主要功能是()。
治疗急性血栓栓塞性疾病最好选
A、剑脊B、怀中抱月C、车轮纹D、金包头E、翘鼻头蕲蛇的性状鉴别特征是
用起重机械吊运模板等材料时,被吊的模板构件和材料应捆牢,起落应听从指挥,吊重物下方()禁止人员停留。
1998年7月,北京某国内旅行社组织接待了从外地某市来北京旅游的一行34人的团队。在参观游览过程中,作为地陪的高某为了节省时间并增加计划以外的游览项目,私自减少了两个计划景点,并一再对客人说,大家到北京来一次不容易,既然来了就应多看一些景点。在征得大多数客
最重要的审美途径是_______。
Nowadays,airtravelisvery【C1】______.WearenotsurprisedwhenwewatchonTVthatapoliticianhastalkedwithFrenchPresid
Fromgoodreadingwecanderivepleasure,companionship,experience,andinstruction.Agoodbookmayabsorbourattentionsoco
最新回复
(
0
)