首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=,求A的特征值,并证明A不可以对角化.
设A=,求A的特征值,并证明A不可以对角化.
admin
2017-08-31
44
问题
设A=
,求A的特征值,并证明A不可以对角化.
选项
答案
由|λE一A|=[*]=(λ一2)
2
=0得λ=2(三重),因为r(2E一A)=1,所以λ=2只有两个线性无关的特征向量,故A不可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/qGr4777K
0
考研数学一
相关试题推荐
(2002年试题,十)设A,B为同阶方阵.当A,B均为实对称矩阵时,试证(1)的逆命题成立.
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T.a,b取何值时,β可由α1,α2,α3线性表出?并写出此表示式.
已知α1=(1,4,0,2)T,α2=(2,7,1,3)T,α3=(0,1,-1,a)T,β=(3,10,b,4)T.a,b取何值时,β不能由α1,α2,α3线性表出?
设当实数a为何值时,方程组Ax=β有无穷多解,并求其通解.
A是三阶矩阵,有特征值λ1=λ2=2,对应两个线性无关的特征向量为ξ1,ξ3,λ2=…2对应的特征向量是ξ3问ξ1+ξ2是否是A的特征向量?说明理由;
设向量α=(a1,a2,…,an)T,β=(b1,b2,…,bn)T都是非零向量,且满足条件α
设四阶矩阵B=,且矩阵A满足关系式A(E-C-1B)TCT=E,其中E为四阶单位矩阵,C-1表示C的逆矩阵,CT表示C的转置矩阵,将上述关系式化简并求矩阵A.
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求向量组α1,α2,α3,α4的一个极大线性无关组,并把其他向量用该极大线性无关组
设A是n阶矩阵,下列不是命题“0是矩阵A的特征值”的充分必要条件的是().
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠O,使得AB=O,则().
随机试题
接触器互锁正、反转控制线路是利用接触器的________辅助触头来实现的。
levelofconsumption
组成药物中含肉桂的方剂是
腹腔动脉开口的平面位于
属于诊断感染性心内膜炎的主要标准是
按《建筑工程施工质量验收统一标准》的规定,依专业性质、建筑部位来划分的工程属于( )。
收入包括()等日常活动形成的经济利益的总流入。
税法适用原则是指税务行政机关或司法机关运用税收法律规范解决具体问题所必须遵循的准则,具体包括下列项目中的( )。
出质人向商业银行申请质押担保时应提供的材料包括()。
A、Heisateacher.B、Heisalawyer.C、Heisadoctor.D、Heisamanager.B
最新回复
(
0
)