首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)是二阶常系数非齐次线性微分方程y”+Py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,( ).
设f(x)是二阶常系数非齐次线性微分方程y”+Py’+qy=sin2x+2ex的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,( ).
admin
2019-11-25
78
问题
设f(x)是二阶常系数非齐次线性微分方程y”+Py’+qy=sin2x+2e
x
的满足初始条件f(0)=f’(0)=0的特解,则当x→0时,
( ).
选项
A、不存在
B、等于0
C、等于1
D、其他
答案
C
解析
,
因为f(0)=f’(0)=0,所以f”(0)=2.于是
,选C.
转载请注明原文地址:https://kaotiyun.com/show/S6D4777K
0
考研数学三
相关试题推荐
证明:当0<a<b<π时,bsinb+2cosb+πb>asina+2cosa+πa.
设函数f(x)在(一∞,+∞)内二阶可导,且f(x)和f"(x)在(一∞,+∞)内有界.证明:f’(x)在(一∞,+∞)内有界.
设f(x)在[a,b]上二阶可导,且f’(a)=f’(b)=0.证明:存在ξ∈(a,b),使
设函数f(x)在[0,3]上连续,在(0,3)内可导,且f(0)+f(1)+f(2)=3,f(3)=1.试证:存在ξ∈(0,3),使f’(ξ)=0.
设函数f(x)在[a,b]上连续(a,b>0),在(a,b)内可导,且f(a)≠f(b).证明:存在η,ξ∈(a,b),使得
设向量组(I)与向量组(Ⅱ),若(I)可由(Ⅱ)线性表示,且r(I)=r(Ⅱ)=r.证明:(I)与(Ⅱ)等价.
求微分方程(3x2+2xy—y2)dx+(x2一2xy)dy=0的通解.
求微分方程y"+4y’+4y=e-2x的通解.
以y=7e3x+2x为一个特解的三阶常系数齐次线性微分方程是________.
随机试题
下列不属于消费者权利的是()。
下列属于进境特许审批货物的有( )。
下列现金流量中,属于投资活动产生的现金流量的是()。
如存在具有支配性影响的关联方,下列情况中,可能表明存在由于舞弊导致的特别风险的有()。
如果没有闪电,人类将失去一位勤劳的“清洁工”。闪电交作时,大气中的部分氧气被激发成臭氧,稀薄的臭氧不但不臭,而且能吸收大部分宇宙射线,使地球表面的生物免遭紫外线过量照射的危害。闪电过程中产生的高温,又可杀死大气中90%以上的细菌和微生物,从而使空气变得更加
简述墨子的思想。
下列标点符号使用全正确的一项是:
(2015年)下列级数中发散的是()
(1)设x>0,y>0,z>0,求函数f(x,y,z)=xyz3在约束条件x2+y2+z2=5R2(R>0为常数)下的最大值;(2)由(1)的结论证明:当a>0,b>0,c>0时,
下列关于防火墙的说法中错误的是(29)。
最新回复
(
0
)