首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 设0<a<b,证明不等式.
[2002年] 设0<a<b,证明不等式.
admin
2019-04-05
75
问题
[2002年] 设0<a<b,证明不等式
.
选项
答案
对于连不等式,一般可分为两个不等式分别证之.可用拉格朗日中值定理证之,也可构造辅助函数证之. 证一 用拉格朗日中值定理证之.为此设函数f(x)=lnx(x>a>0),由拉格朗日中值定理知,至少存在一点∈(a,b),使 [*] 由于0<a<ξ<b,故[*],从而[*]右边不等式的证明请读者完成. 证二 先证右边不等式.设辅助函数证之.为此将其变形为lnb—lna<[*],令b=a,两端化为0,因而可令b=x,构造辅助函数. 设φ(x)=lnx—lna一(x一a)/[*](x>a>0),用函数的单调性证之.因为 φ′(x)=[*]<0, 故当x>a时,φ(x)单调减少.又φ(a)=0,所以,当x>a时,φ(x)<φ(a)=0,即 lnx一lna<(x—a)/[*] 从而当b>a>0时,lnb—lna<(b一a)/[*] 再证左边不等式.用辅助函数法证之.设f(x)=(x
2
+a
2
)(lnx—lna)-2a(x一a)(x>a>0). 因为 f′(x)=2x(lnx—lna)+(x
2
+a
2
)/x一2a=2x(lnx一lna)+(x-a)
2
/x>0, 故当x>a时,f(x)单调增加,又f(a)=0,所以当x>a时,f(x)>f(a)=0,即 (x
2
+a
2
)(lnx—lna)一2a(x一a)>0, 从而当b>a>0时,有 (a
2
+b
2
)(lnb—lna)一2a(b一a)>0, 即[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/SPV4777K
0
考研数学二
相关试题推荐
求微分方程y"+4y’+4y=eax的通解,其中a是常数.
求极限,其中n为给定的自然数.
设f(u)有连续的一阶导数,且f(0)=0,求,其中D={(x,y)|x2+y2≤t2}.
设y=f(x)在(-1,1)内具有二阶连续导数且f〞(x)≠0,试证:(1)对于(-1,1)内的任一x≠0,存在唯一的θ(x)∈(0,1),使下式成立f(x)=f(0)+xfˊ[θ(x)x]
把二重积分f(x,y)dxdy写成极坐标下的累次积分的形式(先r后θ),其中D由直线x+y=1,x=1,y=1围成.
判断下面级数的敛散性:
设曲线L1与L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
设=0,且(Ⅰ)当χ→a时f(χ)与g(χ)可比较,不等价(=r≠1,或=∞),求证:f(χ)-g(χ)~f*(χ)-g*(χ)(χ→a);(Ⅱ)当0<|χ-a<δ时f(χ)与f*(χ)均为正值.求证:
[2009年]已知∫-∞+∞ek∣x∣dx=1,则k=_________.
[2008年]设a,β为三维列向量,矩阵A=ααT+ββT,其中αT,βT分别是α,β的转置.证明:(I)秩(A)≤2;(Ⅱ)若α,β线性相关,则秩(A)<2.
随机试题
延期付款利息是对业主支付的一种约束。()
下面对城镇群体性理解不正确的一项是()。
某公司拟与外商合作生产国际著名品牌的服装,通过调查研究提出以下方案:(1)设备投资:设备买价400万元,预计可使用10年,报废时无残值收入;按税法要求该类设备折旧年限为8年,使用直线法折旧,残值率为10%,计划在2004.年5月1日购进并立即投入
()等主要因素的不同,决定了不同企业的岗前培训的内容是不同的。
从事卫生和社会工作的毕业生人数最多的是()。
以下关于权利起算时间的表述中正确的是()。
设随机变量X1,…,Xn,…相互独立,记Yn=X2n一X2n-1(n≥1),根据大数定律,当n→∞时Yi依概率收敛到零,只要{Xn:n≥1}()
•Readthearticlebelowaboutdecisionrightsinacompany.•ChoosethecorrectwordorphrasetofilleachgapfromA,B,C,or
Completetheformbelow.WriteNOMORETHANTWOWORDSAND/ORANUMBERforeachanswer.PhoneInterviewName:JohnMurphyExample
A、Becausehebelievesnewkindsofmachinerywillbeinvented.B、Becausehebelievesatomicpowerwillbetheonlysortofpower
最新回复
(
0
)