首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2002年] 设0<a<b,证明不等式.
[2002年] 设0<a<b,证明不等式.
admin
2019-04-05
100
问题
[2002年] 设0<a<b,证明不等式
.
选项
答案
对于连不等式,一般可分为两个不等式分别证之.可用拉格朗日中值定理证之,也可构造辅助函数证之. 证一 用拉格朗日中值定理证之.为此设函数f(x)=lnx(x>a>0),由拉格朗日中值定理知,至少存在一点∈(a,b),使 [*] 由于0<a<ξ<b,故[*],从而[*]右边不等式的证明请读者完成. 证二 先证右边不等式.设辅助函数证之.为此将其变形为lnb—lna<[*],令b=a,两端化为0,因而可令b=x,构造辅助函数. 设φ(x)=lnx—lna一(x一a)/[*](x>a>0),用函数的单调性证之.因为 φ′(x)=[*]<0, 故当x>a时,φ(x)单调减少.又φ(a)=0,所以,当x>a时,φ(x)<φ(a)=0,即 lnx一lna<(x—a)/[*] 从而当b>a>0时,lnb—lna<(b一a)/[*] 再证左边不等式.用辅助函数法证之.设f(x)=(x
2
+a
2
)(lnx—lna)-2a(x一a)(x>a>0). 因为 f′(x)=2x(lnx—lna)+(x
2
+a
2
)/x一2a=2x(lnx一lna)+(x-a)
2
/x>0, 故当x>a时,f(x)单调增加,又f(a)=0,所以当x>a时,f(x)>f(a)=0,即 (x
2
+a
2
)(lnx—lna)一2a(x一a)>0, 从而当b>a>0时,有 (a
2
+b
2
)(lnb—lna)一2a(b一a)>0, 即[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/SPV4777K
0
考研数学二
相关试题推荐
[*]
已知3阶矩阵A与3维列向量x,使x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x,令P=(x,Ax,A2X)(1)求3阶矩阵B,使A=PBP-1;(2)求|A+E|的值.
设其中f(x)在x=0处二阶可导,且f(0)=f’(0)=1。a、b为何值时,g(x)在x=0处可导。
A=,求作一个3阶可逆矩阵P,使得PTAP是对角矩阵.
对数螺线r=eθ在点(r,θ)=处的切线的直角坐标方程为________.
设常数k>0,函数内零点个数为()
设x→a时,f(x)与g(x)分别是x—a的n阶与m阶无穷小,则下列命题中,正确的个数是()①f(x)g(x)是x—a的n+m阶无穷小;②若n>m,则是x一a的n—m阶无穷小;③若n≤m,则f(x)+g(x)是x一a的n阶无穷小。
(2004年)设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*是A的伴随矩阵,E是单位矩阵,则|B|=_______.
(1997年试题,一)已知在x=0处连续,则a=_________.
随机试题
光纤作为传输媒体有哪些优缺点?
女性患者,56岁。近2个月内出现5次突然不能言语伴右侧肢体无力。每次持续6—15分钟。既往有严重神经官能症和头痛病史。现神经系统检查正常。比较有价值的辅助检查是
患儿,女,2岁。体重10kg,身高80cm,腹壁皮下脂肪厚度0.7cm,皮肤稍苍白。请判断该小儿的营养状况
痛痛病事件的污染物是水俣病事件的污染物是
关于截瘫的叙述,下列正确的是( )
对有着浓郁的民风民俗的旅游项目和宗教信仰特点的旅游内容较感兴趣的旅游者类型是()。
学校社会工作的目的包括哪些?()
简述现代教育技术在高中历史教学中的作用。
在以下几种网管功能中,不属于配置管理的是()。
Who’sthetallestboy?
最新回复
(
0
)