首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的密度函数为f(x),方差DX=4,而随机变量y的密度函数为2f(—2y),且X与Y的相关系数ρXY=,记Z=X+2Y. (Ⅰ)求EZ,DZ; (Ⅱ)用切比雪夫不等式估计概率P{|Z|≥4}.
设随机变量X的密度函数为f(x),方差DX=4,而随机变量y的密度函数为2f(—2y),且X与Y的相关系数ρXY=,记Z=X+2Y. (Ⅰ)求EZ,DZ; (Ⅱ)用切比雪夫不等式估计概率P{|Z|≥4}.
admin
2019-08-11
27
问题
设随机变量X的密度函数为f(x),方差DX=4,而随机变量y的密度函数为2f(—2y),且X与Y的相关系数ρ
XY
=
,记Z=X+2Y.
(Ⅰ)求EZ,DZ;
(Ⅱ)用切比雪夫不等式估计概率P{|Z|≥4}.
选项
答案
(Ⅰ)EZ = E(X+2Y)=EX+2EY =∫
—∞
+∞
xf(x)dx+2∫
—∞
+∞
y.2f(—2y)dy =∫
—∞
+∞
xf(x)dx+∫
—∞
+∞
(一2y)f(一2y)d(一2y) [*]∫
—∞
+∞
xf(x)dx+tf(t)dt=0, 由此可知,EZ=0,EY=[*]EX.又DY=EY
2
一(EY)
2
,而 EY
2
=∫
—∞
+∞
y
2
.2f(一2y)dy=[*]∫
—∞
+∞
(一2y)
2
f(一2y)d(一2y) [*] 所以 DY=EY
2
一(EY)
2
=[*] DZ = D(X+2Y) = DX+4DY+4cov(X,Y) = DX+4DY+[*] (Ⅱ)由切比雪夫不等式 P{|Z|≥4} = P{|Z—EZ|≥4}≤[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/dgJ4777K
0
考研数学三
相关试题推荐
设C1和C2是两个任意常数,则函数y=ex(C1cos2x+C2sin2x)+sinx是二阶常系数线性微分方程()的通解.
设某一设备由三大部件构成,设备运转时,各部件需调整的概率分别为0.1,0.2,0.3,若各部件的状态相互独立,求同时需调整的部件数X的分布函数.
设随机变量X服从[a,a+2]上的均匀分布,对X进行3次独立观测,求最多有一次观测值小于a+1的概率.
设随机变量X服从正态分布N(μ,42),Y~N(μ,52),记p1=P{X≤μ一4},p2=P{Y≥μ+5},则
设X1,X2,…,Xn是取自总体X的一个简单随机样本,EX=μ,DX=σ.记Y1=X1+…+X8,Y2=X5+…+X12,求Y1与Y2的相关系数.
设二维随机变量(X,Y)的联合密度函数为试求:方差DX,DY;
设二维随机变量(U,V)~N(2,2;4,1;),记X=U一bV,Y=V.求(X,Y)的密度函数f(x,y).
设随机变量X与Y相互独立,且X~B(5,0.8),Y一N(1,1),则P{0<X+Y<10}≥_________.
设3阶实对称矩阵A的秩为2,λ1=λ2=6是A的二重特征值,若α1=(1,1,0)T,α2=(2,1,1)T,α3=(一1,2,一3)T都是A属于λ=6的特征向量,求矩阵A.
矩阵A=合同于
随机试题
资产评估机构申请证券评估资格,应具有不少于()名注册资产评估师,其中最近3年持有注册资产评估师证书且连续执业的不少于()人。
单加氧酶系参与
为安全输血,临床医生需对需要输血的病人做下列哪项工作
汽车正在行驶中,一名儿童突然冲向马路对面。司机急刹车,汽车在发出刺耳的刹车声后停住,儿童在车前的半米处跑过。这时司机顿感心跳加快,头上冒汗,手脚无力,这种情绪状态是
外痔发生于齿状线以上,是肛门直肠病中最常见的疾病。()
基金信息披露的实质性原则包括()
下列关于税务行政复议申请人的表述中,不正确的有()。
属于“一行三会”范畴的是()。
菜鸟,新手
20世纪70年代末,中国开始实行对外开放,并逐步把它作为一项基本国策,主要取决于()
最新回复
(
0
)