首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATX=ATb一定有解.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATX=ATb一定有解.
admin
2015-08-17
84
问题
设A是m×n阶实矩阵,证明:(1)r(A
T
A)=r(A);(2)A
T
X=A
T
b一定有解.
选项
答案
(1)设r(A)=r,r(A
T
A)=r
2
,由于AX=0的解都满足(A
T
A)X=A
T
(AX)=0,故Ax=0的基础解系(含n一r
1
个无关解)含于A
T
AX=0的某个基础解系(含n一r
2
个无关解)之中,所以n一r
1
≤n一r
2
,故有r
2
≤r
1
,即r(A
T
A)≤r(A). ① 又当A
T
AX=0时(X为实向量),必有X
T
A
T
AX=0,即(AX)
T
AX=0,设AX=[b
1
,b
2
,…,b
m
]
T
,则[*],必有b
1
=b
2
=…=b
m
=0,即AX=0,故方程组A
T
AX=0的解必满足方程组AX=0,从而有 n一r(A
T
A)≤n一r(A), r(A)≤r(A
T
A). ② 由①,②得证r(A)=r(A
T
A). (2)A
T
AX=A
T
b有解[*]r(A
T
A)=r(A
T
A|A
T
b).由(1)知r(A)=r(A
T
)=r(A
T
A),将A
T
,A
T
A=B以列分块,且B=A
T
A的每个列向量均可由A
T
的列向量线性表出,故A
T
和B=A
T
A的列向量组是等价向量组,A
T
b是A
T
的列向量组的某个线性组合,从而r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故r(A
T
A)=r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故(A
T
A)X=A
T
b有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/SQw4777K
0
考研数学一
相关试题推荐
设a>1,n为正整数,证明:
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:cov
设f(x)在[-1,1]上可导,f(x)在x=0处二阶可导,且f’(0)=0,f’’(0)=4.求
设A为3阶实对称矩阵,且满足条件A2+2A=O.已知A的秩r(A)=2.求A的全部特征值;
设A为m×n矩阵,B为n×p矩阵,证明r(AB)≥r(A)+r(B)-n.
设f(x,y),g(x,y)在平面有界闭区域D上连续,且g(x,y)≥0.证明:存在(ξ,η)∈D,使得
设A为n阶可逆矩阵,A2=|A|E.证明:A=A*.
设A是n阶矩阵,若存在正整数k,使线性方程组Akx=0有解向量α,且Ak-1α≠0.证明:向量组α,Aα2,…,Ak-1α是线性无关的.
设A,B都是可逆矩阵,证明可逆,并求它的逆矩阵。
设A为mxn实矩阵,E为n阶单位矩阵,已知矩阵B=λE+ATA,试证当λ>0时矩阵B为正定矩阵.
随机试题
Butforyouradvice,I______itsosuccessfully.
A.胸骨左缘收缩期杂音B.奔马律C.肺动脉瓣区第2音亢进D.心尖部收缩期杂音E.心包磨擦音心力衰竭可伴有
当牙龈有中度炎症,探诊后出血,血渗在龈沟内,龈沟出血指数应为
A.黄酮B.香豆素C.蒽醌D.二萜E.木质素《中国药典》中,厚朴质量控制成分的结构类型是
职业健康安全管理体系中的术语“不符合”是指任何与工作标准、惯例、法规、管理体系绩效等的偏离,其结果能直接导致()。
陈祖培教授介绍。天津医科大学最近完成的一项国家自然科学基金重点项目——“必需微量元素过量(碘过量)对健康影响的研究”结果表明:目前食盐中加碘的浓度是碘的生理需要量,不会造成人群碘摄入过量,因此也不会造成因食用碘盐而形成的碘过量的公共卫生问题。碘浓度即使再增
下列对IEEE802.11b无线局域网的描述中,错误的是()。
______ifheiswillingtofitinwiththeplansofthegroup.
持续时间
A、Sendanemailtohim.B、Imposeanoverduefineonhim.C、Askhisroommatestogivehimamessage.D、Givethenoticetohistea
最新回复
(
0
)