首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATX=ATb一定有解.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATX=ATb一定有解.
admin
2015-08-17
31
问题
设A是m×n阶实矩阵,证明:(1)r(A
T
A)=r(A);(2)A
T
X=A
T
b一定有解.
选项
答案
(1)设r(A)=r,r(A
T
A)=r
2
,由于AX=0的解都满足(A
T
A)X=A
T
(AX)=0,故Ax=0的基础解系(含n一r
1
个无关解)含于A
T
AX=0的某个基础解系(含n一r
2
个无关解)之中,所以n一r
1
≤n一r
2
,故有r
2
≤r
1
,即r(A
T
A)≤r(A). ① 又当A
T
AX=0时(X为实向量),必有X
T
A
T
AX=0,即(AX)
T
AX=0,设AX=[b
1
,b
2
,…,b
m
]
T
,则[*],必有b
1
=b
2
=…=b
m
=0,即AX=0,故方程组A
T
AX=0的解必满足方程组AX=0,从而有 n一r(A
T
A)≤n一r(A), r(A)≤r(A
T
A). ② 由①,②得证r(A)=r(A
T
A). (2)A
T
AX=A
T
b有解[*]r(A
T
A)=r(A
T
A|A
T
b).由(1)知r(A)=r(A
T
)=r(A
T
A),将A
T
,A
T
A=B以列分块,且B=A
T
A的每个列向量均可由A
T
的列向量线性表出,故A
T
和B=A
T
A的列向量组是等价向量组,A
T
b是A
T
的列向量组的某个线性组合,从而r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故r(A
T
A)=r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故(A
T
A)X=A
T
b有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/SQw4777K
0
考研数学一
相关试题推荐
设A,B,C为常数,B2一AC>0,A≠0.u(x,y)具有二阶连续偏导数,试证明:必存在非奇异线性变换ξ=λ1x+y,η=λ2x+y(λ1,λ2为常数),将方程=0.
f(χ)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f′(0)=0.证明:存在ξ∈(-1,1),使得f″′(ξ)=3.
[*]
证明:
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
求矩阵A=的特征值与特征向量.
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)证明:Aα1,Aα2,Aα3线性无关;(2)求|A|.
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
随机试题
并联电阻的等效电阻值小于并联中任一电阻的阻值。()
A.11~12小时B.6~8小时C.1小时D.1~2小时E.5~15分钟初产妇与经产妇的第三产程需
人与外界环境的统一性表现为
李先生3年后需要5万元来支付其儿子的大学学费,若年投资收益率为9%,那么现在李先生需要拿出()元进行投资。
SKU的含义是()。
人们往往把35~50周岁的教师群体称为中年教师,他们一般从事教育工作超过十年,积累了一定的教育教学经验,其中一部分已成为学校的中坚力量。据了解,目前,某市区40岁以上的中年教师有13400人,占到整个教师的1/3以上,随着新课改的开展,部分中年教师在日常
在司法实践中,有时会出现交叉管辖的现象。如果公安机关侦查刑事案件涉及到人民检察院管辖的贪污案件时,依照有关规定应当如何处理?()
李东阳是某家用电器企业的战略规划人员,正在参与制定本年度的生产与营销计划。为此,他需要对上一年度不同产品的销售情况进行汇总和分析,从中提炼出有价值的信息。根据下列要求,帮助李东阳运用已有的原始数据完成上述分析工作。在工作表“Sheet1”中,从B3单元
Revengeisoneofthosethingsthateveryoneenjoys.Peopledon’tliketotalkaboutit,though.Justthesame,thereisnothing
TypeDpersonality,firstdefinedinthe’90s,ischaracterizedbyfeelingsofnegativity,depression,anxiety,stress,anger,a
最新回复
(
0
)