首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATX=ATb一定有解.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATX=ATb一定有解.
admin
2015-08-17
48
问题
设A是m×n阶实矩阵,证明:(1)r(A
T
A)=r(A);(2)A
T
X=A
T
b一定有解.
选项
答案
(1)设r(A)=r,r(A
T
A)=r
2
,由于AX=0的解都满足(A
T
A)X=A
T
(AX)=0,故Ax=0的基础解系(含n一r
1
个无关解)含于A
T
AX=0的某个基础解系(含n一r
2
个无关解)之中,所以n一r
1
≤n一r
2
,故有r
2
≤r
1
,即r(A
T
A)≤r(A). ① 又当A
T
AX=0时(X为实向量),必有X
T
A
T
AX=0,即(AX)
T
AX=0,设AX=[b
1
,b
2
,…,b
m
]
T
,则[*],必有b
1
=b
2
=…=b
m
=0,即AX=0,故方程组A
T
AX=0的解必满足方程组AX=0,从而有 n一r(A
T
A)≤n一r(A), r(A)≤r(A
T
A). ② 由①,②得证r(A)=r(A
T
A). (2)A
T
AX=A
T
b有解[*]r(A
T
A)=r(A
T
A|A
T
b).由(1)知r(A)=r(A
T
)=r(A
T
A),将A
T
,A
T
A=B以列分块,且B=A
T
A的每个列向量均可由A
T
的列向量线性表出,故A
T
和B=A
T
A的列向量组是等价向量组,A
T
b是A
T
的列向量组的某个线性组合,从而r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故r(A
T
A)=r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故(A
T
A)X=A
T
b有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/SQw4777K
0
考研数学一
相关试题推荐
f(χ)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f′(0)=0.证明:存在ξ∈(-1,1),使得f″′(ξ)=3.
设二次型f(x1,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3,(b>0)其中A的特征值之和为1,特征值之积为-12.(1)求a,b.(2)用正交变换化f(x1,x2,x3)为标准型.
已知向量组有相同的秩,且β3可由α1,α2,α3线性表出,求a,b的值.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵(k为常数),且AB=O,求线性方程组Ax=0的通解。
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)=f(ξ)=f(2)-2f(1).
设函数f(x)在[0,π]上连续,且∫0πf(x)sinxdx=0,∫0πcosxdx=0。证明在(0,π)内f(x)至少有两个零点。
设f(x,y),g(x,y)在平面有界闭区域D上连续,且g(x,y)≥0.证明:存在(ξ,η)∈D,使得
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyfxy’’(x,y)dxdy。
求A=的特征值和特征向量.
随机试题
国际信贷业务中,长期贷款利率主要有()
在组织目标制定的过程中,战术性行政组织目标的制定应坚持的原则是
电子商务在四个方面改变了国际企业国际营销的方式,下列说法错误的是()
肾盂造影所见:肾盏变形,受压拉长,多为哪种疾病之影像肾盂造影所见,肾盂内充盈缺损影,多为哪种疾病之影像
医患关系是建立在医疗保健活动中产生的最重要、最基本的医疗
1997年《有效银行监管的核心原则》确定了一个有效监管体系所必须具备的25项基本原则,分7类,以下属于这7类的是( )。
地理老师讲到地形时,使用彩色图片的效果比只用黑白图片的效果好,这主要体现了知觉的()
下列说法错误的是()。
恩格斯在谈到事物普遍联系的“辩证图景”时指出:“当我们深思熟虑地考察自然界或人类历史或我们自己的精神生活的时候,首先呈现在我们眼前的,是一幅由种种联系和相互作用无穷无尽地交织起来的画面。”联系具有普遍性,表现在()
「すみません、この本がだれのですか。」「________。」
最新回复
(
0
)