首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATX=ATb一定有解.
设A是m×n阶实矩阵,证明:(1)r(ATA)=r(A);(2)ATX=ATb一定有解.
admin
2015-08-17
83
问题
设A是m×n阶实矩阵,证明:(1)r(A
T
A)=r(A);(2)A
T
X=A
T
b一定有解.
选项
答案
(1)设r(A)=r,r(A
T
A)=r
2
,由于AX=0的解都满足(A
T
A)X=A
T
(AX)=0,故Ax=0的基础解系(含n一r
1
个无关解)含于A
T
AX=0的某个基础解系(含n一r
2
个无关解)之中,所以n一r
1
≤n一r
2
,故有r
2
≤r
1
,即r(A
T
A)≤r(A). ① 又当A
T
AX=0时(X为实向量),必有X
T
A
T
AX=0,即(AX)
T
AX=0,设AX=[b
1
,b
2
,…,b
m
]
T
,则[*],必有b
1
=b
2
=…=b
m
=0,即AX=0,故方程组A
T
AX=0的解必满足方程组AX=0,从而有 n一r(A
T
A)≤n一r(A), r(A)≤r(A
T
A). ② 由①,②得证r(A)=r(A
T
A). (2)A
T
AX=A
T
b有解[*]r(A
T
A)=r(A
T
A|A
T
b).由(1)知r(A)=r(A
T
)=r(A
T
A),将A
T
,A
T
A=B以列分块,且B=A
T
A的每个列向量均可由A
T
的列向量线性表出,故A
T
和B=A
T
A的列向量组是等价向量组,A
T
b是A
T
的列向量组的某个线性组合,从而r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故r(A
T
A)=r(A
T
)=r(A
T
|A
T
b)=r(A
T
A|A
T
b),故(A
T
A)X=A
T
b有解.
解析
转载请注明原文地址:https://kaotiyun.com/show/SQw4777K
0
考研数学一
相关试题推荐
f(χ)在[-1,1]上三阶连续可导,且f(-1)=0,f(1)=1,f′(0)=0.证明:存在ξ∈(-1,1),使得f″′(ξ)=3.
设,其中ψ为可微函数,求.
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:(Yi
设f(x)在[1,2]上连续,在(1,2)内可导,证明:存在ξ∈(1,2),使得ξf’(ξ)=f(ξ)=f(2)-2f(1).
设f(x,y),g(x,y)在平面有界闭区域D上连续,且g(x,y)≥0.证明:存在(ξ,η)∈D,使得
已知函数f(x,y)具有二阶连续偏导数,且f(1,y)=0,f(x,1)=0,f(x,y)dxdy=a,其中D={(x,y)|0≤x≤1,0≤y≤1},计算二重积分I=xyfxy’’(x,y)dxdy。
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解。
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
设α1,…,αm,β为m+1维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
随机试题
简述组织文化的功能。
艾青是我国现代著名诗人,20世纪30年代,他在狱中创作的诗歌《______》在诗坛引起巨大轰动。他的代表作品主要有诗集《______》《北方》《火把》《向太阳》《归来的歌》等。
郁证的主要病机是
【2014专业知识真题上午卷】供配电系统短路电流计算中,在下列哪些情况下,可不考虑高压异步电动机对短路峰值电流的影响?()
下列各项纠纷中,适用《仲裁法》仲裁的是()。
甲公司为境内上市公司,其2×21年度财务报告于2×22年3月20日经董事会批准对外报出。2×21年,甲公司发生的部分交易或事项以及相关的会计处理如下: 2×21年7月1日,甲公司实施一项向乙公司(甲公司的子公司)10名高管人员每人授予10万份股票期权的股
双方有共同的目标,为了达到这一目标,彼此能配合和容忍对方,这种人际关系是()。
新文化运动促进教育观念的转变主要表现在哪几个方面?
汉朝在京师设立的地方监察机关是()
Sorry,Idon’tknowheisafriendof________.
最新回复
(
0
)