首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ),g(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f′+(a)f′-(b)>0,且g(χ)≠0(χ∈[a,b]),g〞(χ)≠0(a<χ<b),证明:存在ξ∈(a,b),使得.
设f(χ),g(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f′+(a)f′-(b)>0,且g(χ)≠0(χ∈[a,b]),g〞(χ)≠0(a<χ<b),证明:存在ξ∈(a,b),使得.
admin
2019-06-28
89
问题
设f(χ),g(χ)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,f′+(a)f′-(b)>0,且g(χ)≠0(χ∈[a,b]),g〞(χ)≠0(a<χ<b),证明:存在ξ∈(a,b),使得
.
选项
答案
设f′
+
(a)>0,f′
-
(b)>0, 由f′
+
(a)>0,存在χ
1
∈(a,b),使得f(χ
1
)>f(a)=0; 由f′
-
(6)>0,存在χ
2
∈(a,b),使得f(χ
2
)<f(b)=0, 因为f(χ
1
)f(χ
2
)<0,所以由零点定理,存在c∈(a,b),使得f(c)=0. 令h(χ)=[*],显然h(χ)在[a,b]上连续,由h(a)=h(c)=h(b)=0, 存在ξ
1
∈(a,c),ξ
2
∈(c,b),使得h′(ξ
1
)=h′(ξ
2
)=0, [*] 令φ(χ)=f′(χ)g(χ)-f(χ)g′(χ),φ(ξ
1
)=φ(ξ
2
)=0, 由罗尔定理,存在ξ∈(ξ
1
,ξ
2
)[*](a,b),使得φ′(ξ)=0, 而φ′(χ)=f〞(χ)g(χ)-f(χ)g〞(χ), 所以[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/IiV4777K
0
考研数学二
相关试题推荐
已知∫f’(x3)dx=x3+C(C为任意常数),则f(x)=_________。
求二元函数z=f(x,y)=x2y(4一x一y)在直线x+y=6,x轴与y轴围成的闭区域D上的最大值与最小值。
微分方程3extanydx+(1一ex)sec2ydy=0的通解是_________。
设n元线性方程组Ax=b,其中当a为何值时,该方程组有唯一解,并求x1;
设矩阵A=,行列式|A|=一1,又A*的属于特征值λ0的一个特征向量为α=(一1,一1,1)T,求a,b,c及λ0的值。
设函数f(x)=lnx+(Ⅰ)求f(x)的最小值;(Ⅱ)设数列{xn}满足lnxn+<1,证明xn存在,并求此极限。
设f(x)在[a,b]连续,且∈[a,b],总∈[a,b],使得|f(y)|≤|f(x)|.试证:∈[a,b],使得f(ξ)=0.
(03)已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0试证这三条直线交于一点的充分必要条件为a+b+c=0.
曲面∑为锥面z2=x2+y2(0≤z≤1)的下侧,计算
随机试题
Whenyouimaginethedesert,youprobablythinkofaveryhotplacecoveredwithsand.Althoughthisisagooddescriptionform
A.甲型肝炎抗体检测B.血ALT测定C.胆红素测定D.乙型肝炎抗原抗体测定E.肝脏B超检查孕妇,妊娠32周,3周前食用未煮熟的毛蚶后出现恶心、呕吐、食欲缺乏、小便深黄色。血压140/90mmHg。子宫底高度30cm,胎心144次/分。怀疑孕妇患
妊娠早期羊水的主要来源是
参加养老保险的个人,达到法定退休年龄时累计缴费()年的,按月领取基本养老金。
关于我国期货交易所对持仓限额制度的具体规定,以下表述正确的有()。
证券初始登记包括( )等。
报送审计主要适用于政府审计机关对大型企业的审计。()
“二个有利于”标准中最根本的、处于核心地位的是()。
需求分析的最终结果是产生______。
Peopletravelbyplane,bytrain,byship,bybus.Tome,thebestwayoftravelingonasummeristogoonfoot.Myprefere
最新回复
(
0
)