首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,α3,α4为线性方程组Ax=0的一个基础解系,β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,试问实数t满足什么关系时,β1,β2,β3,β4也为Ax=0的一个基础解系。
设α1,α2,α3,α4为线性方程组Ax=0的一个基础解系,β1=α1+tα2,β2=α2+tα3,β3=α3+tα4,β4=α4+tα1,试问实数t满足什么关系时,β1,β2,β3,β4也为Ax=0的一个基础解系。
admin
2021-01-19
119
问题
设α
1
,α
2
,α
3
,α
4
为线性方程组Ax=0的一个基础解系,β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
=α
3
+tα
4
,β
4
=α
4
+tα
1
,试问实数t满足什么关系时,β
1
,β
2
,β
3
,β
4
也为Ax=0的一个基础解系。
选项
答案
由题设知,β
1
,β
2
,β
3
,β
4
均为α
1
,α
2
,α
3
,α
4
的线性组合,齐次方程组当有非零解时,解向量的任意组合仍是该齐次方程组的解向量,所以β
1
,β
2
,β
3
,β
3
均为Ax=0的解。下面证明β
1
,β
2
,β
3
,β
3
线性无关。设 k
1
β
1
+k
2
β
2
+k
3
β
3
+k
4
β
4
=0, (*) 把β
1
=α
1
+tα
2
,β
2
=α
2
+tα
3
,β
3
=α
3
+tα
4
,β
4
=α
4
+tα
1
,代入整理得, (k
1
+tk
4
)α
1
+(k
2
+tk
1
)α
2
+(k
3
+tk
2
)α
3
+(k
4
+tk
3
)α
4
=0, 由α
1
,α
2
,α
3
,α
4
为线性方程组Ax=0的一个基础解系,知α
1
,α
2
,α
3
,α
4
线性无关,由线性无关的定义,知(*)中其系数全为零,即[*]其系数行列式 [*]=1一t
4
。 由齐次线性方程组只有零解得充要条件,可见,当1一t
4
≠0,即当t≠±1日寸,上述方程组只有零解k
1
=k
2
=k
3
=k
4
=0,从而向量组β
1
,β
2
,β
3
,β
4
线性无关。故当t≠±1时,β
1
,β
2
,β
3
,β
4
也是方程组Ax=0的基础解系。
解析
转载请注明原文地址:https://kaotiyun.com/show/SV84777K
0
考研数学二
相关试题推荐
设函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式f’(x)+f(x)一∫0xf(t)dt=0。证明:当x≥0时,成立不等式e-x≤f(x)≤1。
求下列方程的通解:(Ⅰ)y’’3y’=2-6x;(Ⅱ)y’’+y=ccosxcos2x.
eπ与πe谁大谁小,请给出结论并给予严格的证明(不准用计算器).
设A为三阶实对称矩阵,其特征值为λ1=0,λ2=λ3=1,α1,α2为A的两个不同特征向量,且A(α1+α2)=α2.(Ⅰ)证明:α1,α2正交.(Ⅱ)求AX=α2的通解.
(Ⅰ)求积分f(t)=∫01lndχ(-∞<t<+∞).(Ⅱ)求
设函数f(x)在闭区间[0,1]上可微,且满足λ∈(0,1)为常数.求证:在(0,1)内至少存在一点ξ,使f’(ξ)=一f(ξ)/ξ.
设函数计算二重积分其中平面区域D={(x,y)|x2+y2≤2y}.
设f=x12+x22+5x32+2a1x2—2x1x3+4x2x3为正定二次型,则未知系数a的范围是__________。
(2008年)设函数f(χ)=sinχ,则f(χ)有【】
随机试题
以下是我国某银行2008年12月31日的资本充足率情况表如表所示。请根据我国银行监管规定,回答以下问题:我国银行机构的资本充足率最低为()。
A.左枕前B.右枕前C.左枕横D.左枕后E.右枕后胎头矢状缝在骨盆入口右斜径上,大囟门在骨盆的左前方
和后腭杆相比,前腭杆的特点是
国家标准《卓越绩效评价准则》关注的重点是()。[2006年真题]
人口抚养比是指非劳动人口与劳动年龄(15~64岁)人口数之比。下图示意1980-2030年我国少儿抚养比和老年抚养比的变化趋势。读图回答下题。2015年前后我国老年抚养比变化明显,主要的影响因素是()。
按下表各项要求对长江、黄河进行比较。
按生产三阶段论,试阐明总产量、平均产量、边际产量的相互关系,以及各个阶段的特点。
A、 B、 C、 D、 A
(1)求函数项级数e-x+2e-2x+…+ne-nx+…收敛时x的取值范围;(2)当上述级数收敛时,求其和函数S(x),并求∫ln2ln3S(x)dx.
A、Becauseshehadn’theardofthewriteratthetime.B、Becauseitwasn’tonanyoftheprofessors’readinglists.C、Becauseitw
最新回复
(
0
)