首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
在椭圆x2+4y2=4上求一点,使其到直线2x+3y-6=0的距离最短。
在椭圆x2+4y2=4上求一点,使其到直线2x+3y-6=0的距离最短。
admin
2018-12-27
43
问题
在椭圆x
2
+4y
2
=4上求一点,使其到直线2x+3y-6=0的距离最短。
选项
答案
方法一:由点到直线的距离公式,椭圆x
2
+4y
2
=4上的点P(x,y)到直线2x+3y-6=0的距离为 [*] 由于d的表达式中含有绝对值,而[*]所以本题转化为求函数(2x+3y-6)
2
在条件x
2
+4y
2
=4下的最小值点。 构造拉格朗日函数F(x,y,λ)=(2x+3y-6)
2
+λ(x
2
+4y
2
-4),则 [*] 解得 [*] 于是 [*] 根据本题实际意义知,最短距离存在,即点[*]为所求的点。 方法二:作椭圆x
2
+4y
2
=4的切线l,使其与直线2x+3y-6=0平行,这样的切线有两条,对应的两个切点,其中一个距直线2x+3y-6=0最远,另一个距直线2x+3y-6=0最近。 直线2x+3y-6=0的斜率为[*]而椭圆x
2
+4y
2
=4在点P(x,y)处切线斜率:[*]于是[*]即得8y=3x。 将8y=3x与x
2
+4y
2
=4联立解得 [*] 由距离公式[*]知,点[*]即为所求的点。
解析
转载请注明原文地址:https://kaotiyun.com/show/ShM4777K
0
考研数学一
相关试题推荐
设向量组α1,…,αr线性无关,又β1=a11α1+a21α2+…+ar1αrβ2=a12α1+a22α2+…+ar2αrβr=a1rα1+a2rα2+…+arrαr记矩阵A=(aij)r×r,证明:β1,β2,…,βr线性无关的充分必要条件是A的
设A为n阶非零矩阵,存在某正整数m,使Am=O,求A的特征值,并证明A不与对角阵相似.
设X~U(0,1)且X与Y独立同分布,求的分布函数(U(0,1)表示区间(0,1)上的均匀分布)F(u).
求下列方程的通解或满足给定初始条件的特解:(1)y’+1=xex+y(2)(3)(y+2xy2)dx+(x-2x2y)dy=0(4)(1+x)y"+y’=0(5)yy”一(y’)2=y4,y(0)=1,y’(0)=0(6)y"+4y’+1=0
(89年)设随机变量X与Y独立,且X~N(1,2),Y~N(0,1),试求随机变量Z=2X—Y+3的概率密度函数.
(10年)求函数f(x)=的单调区间与极值.
(02年)设函数f(x)在x=0某邻域内有一阶连续导数,且f(0)≠0,f’(0)≠0,若af(h)+bf(2h)一f(0)在h→0时是比h高阶的无穷小,试确定a、b的值.
(88年)设函数f(x)在区间[a,b]上连续,且在(a,b)内有f’(x)>0.证明:在(a,b)内存在唯一的ξ,使曲线y=f(x)与两直线y=f(ξ),x=a所围平面图形面积S1是曲线y=f(x)与两直线y=f(ξ),x=b所围平面图形面积S2的3倍.
随机试题
阅读材料并回答问题:如何以更好的质量实现经济社会的发展,是我们面临的也是必须要解决好的重大问题。在未来的发展中,资源环境对经济发展已构成严重制约,城乡之间、区域之间、经济与社会之间发展不平衡的矛盾趋于突出,资源相对短期、生态环境脆弱、环境容量不足
mRNA剪接过程中被去除的部分叫做
某猪场2岁种公猪,精神沉郁,步态强拘,拱背,腰部触诊敏感,常做排尿姿势。尿检可见红细胞、白细胞、盐类结晶、肾上皮细胞,该病可能的诊断是()
A.桂枝茯苓丸B.香棱丸C.启宫丸D.开郁种玉汤E.开郁二陈汤
甲河是多国河流,乙河是国际河流。根据国际法相关规则,下列哪些选项是正确的?(2011—卷一—74,多)
根据《建筑工程施工质量验收统一标准》GB50300—2013,建筑工程质量验收的最小单元是()。
根据《中华人民共和国村民委员会组织法》,村务监督委员会成员的产生方式是()。
案例下面是某求助者的WAIS-RC测验结果:根据以上测验得分,可以判断该求助者()
Manythingsmakepeoplethinkartistsareweird.Buttheweirdestmaybethis:artists’onlyjobistoexploreemotions,andyet
Yearsaftertheeconomicrecessionwitnessed_________businessrecoverythroughoutthewholenation.
最新回复
(
0
)