首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(χ)在[a,b]上可导,且f′+(a)>0,f′-(b)>0,f(a)≥f(b),求证:f′(χ)在(a,b)至少有两个零点.
设f(χ)在[a,b]上可导,且f′+(a)>0,f′-(b)>0,f(a)≥f(b),求证:f′(χ)在(a,b)至少有两个零点.
admin
2019-02-23
57
问题
设f(χ)在[a,b]上可导,且f′
+
(a)>0,f′
-
(b)>0,f(a)≥f(b),求证:f′(χ)在(a,b)至少有两个零点.
选项
答案
f(χ)在[a,b]的连续性,保证在[a,b]上f(χ)至少达到最大值和最小值各一次.由f(a)≥f(b)得,若f(χ)的最大值在区间端点达到,则必在χ=a达到.由f(χ)的可导性,必有f′
+
(a)≤0,条件f′
+
(a)>0表明f(χ)的最大值不能在端点达到.同理可证f(χ)的最小值也不能在端点χ=a或χ=b达到.因此,f(χ)在[a,b]的最大值与最小值必在开区间(a,b)达到,于是最大值点与最小值点均为极值点.又f(χ)在[a,b]可导,在极值点处f′(χ)=0,所以f′(χ)在(a,b)至少有两个零点.
解析
转载请注明原文地址:https://kaotiyun.com/show/Slj4777K
0
考研数学二
相关试题推荐
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
计算二重积分,其中D:x2+y2≤x+y+1.
设二阶常系数非齐次线性微分方程y’’+y’+qy=Q(x)有特解y=3e-4x+x2+3x+2,则Q(x)=______,该微分方程的通解为_______
求函数f(x,y)=4x-4y-x2-y2在区域D:x2+y2≤18上最大值和最小值.
已知矩阵A=只有两个线性无关的特征向量,则A的三个特征值是________,a=________
设函数y=y(x)由方程组
令f(x)=arctanx,由微分中值定理得[*]
求极限:f(χ),其中f(χ)=.
设齐次方程组(Ⅰ)有一个基础解系β=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
设且r(A)=2,则k=_______.
随机试题
甲股份有限公司(以下简称“甲公司”)是一家上市公司,与股权投资有关的资料如下:(1)甲公司与乙公司均为增值税一般纳税人,适用的增值税税率为17%,适用的所得税税率均为25%,所得税均采用资产负债表债务法核算。2×16年1月1日,甲公司以定向增发普
政府及其所属部门滥用行政权力,强制经营者从事法律所禁止的排除或限制市场竞争的行为称为【】
患者,男,56岁。1周前右上腹部绞痛,伴恶心、呕吐,体温37.4℃,予以抗炎治疗后缓解。3天来,出现巩膜黄染,食欲缺乏,收入院。查体:腹软,无压痛,Murphy征(﹣),肝区轻叩痛。B超:胆囊10cm×5cm大小,其内可见多个点状回声,胆总管上段直径1.2
上消化道出血
肉眼血尿反复发作,最常见的肾小球疾病是
在项目目标动态控制的纠偏措施中,调整管理职能分工属于()。
下列行为没有违法的是()。
下列筹资方式中,没有筹资费用,但是财务风险较小,资本成本较高的筹资方式是()。
某案的两名凶手在以下五人中,经过公安部门的侦查后得知:①只有甲是凶手,乙才是凶手②只要丁不是凶手,丙就不是凶手③或乙是凶手,或丙是凶手④丁没有戊为帮凶,就不会作案⑤戊没有作案时间这件案件中的凶手是:
我国现场检查的原则是()。
最新回复
(
0
)